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Abstract. Effective vibronic Hamiltonian models are built for £ ® e Jahn-Teller systems and analytical
solutions are obtained through Lie algebraic methods. Although approximate, we show that these models
allow in particular to recover the possible ground state crossover when quadratic couplings are present.
The equivalence of E® e and G’ ® e vibronic systems in cubic symmetry is precisely established through a
particular realization of the electronic operators for an orbital quadruplet. We show how this equivalence
is broken by a rovibronic interaction which, for a G’ ® e system, still gives an exactly solvable model.

PACS. 03.65.Fd Algebraic methods — 33.20.Tp Vibrational Analysis — 33.20.Wr Vibronic, rovibronic and

rotation-electron-spin interactions

1 Introduction

In a previous paper [1], hereafter referred as (I), the ef-
fective Hamiltonian approach to doubly degenerate elec-
tronic states has been presented and applied to several
Jahn-Teller (JT) systems when the symmetrized product
of the F irreducible representation (irrep) spanned by the
electronic states is of type A; + By + Bs. We consider now
the more widespread case when this product contains a
true E-type irrep, together with the nearby G’ ® e system
in cubic molecules involving a fourfold degenerate elec-
tronic state.

Over the last 40 years these F ® e systems have been
studied by numerous authors and from many different
points of view (for reviews and many references see for
instance [2-9]). Our approach differ from previous ones in
several aspects. Firstly, we maintain our aim to give a uni-
fied framework for the study of dynamical rovibronic in-
teractions in doubly degenerate electronic states whatever
the molecular point symmetry group G. This is possible
through the use of the underlying algebraic symmetry
together with a tensor formalism. We thus built formal
Hamiltonian models which can be next specialized to rep-
resent untransformed Hamiltonians or effective ones. Sec-
ondly, we put special emphasis on exactly solvable effec-
tive models for various F ® e dynamical JT systems a
classification of which is established first.
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Somewhat curiously the possibility of an analytical
treatment appears more easily if one works within an un-
coupled vibronic basis. These models should be in most
cases only zeroth-order approximations for a more refined
treatment; eventually they furnish the necessary ingredi-
ents for a perturbative treatment of higher-order inter-
actions. This is especially important if the experimental
data are rare; a good zeroth-order model being essential
before including these higher-order interactions.

In Section 2 we briefly recall the bases of our formal-
ism and obtain general expansions for F ® e dynamical
JT systems. The possible terms which may appear in the
expansion of an untransformed Hamiltonian are detailed
up to quadratic terms in Section 3. This allows to estab-
lish correlations with standard forms through the vibronic
matrix. The general form of an effective Hamiltonian is
obtained in Section 4 and the matrix elements of an arbi-
trary vibronic operator are given in a symmetry adapted
basis.

Approximate models are detailed next after a classifi-
cation in five types of F ® e systems has been made. Their
eigenvalues are determined and we indicate for each type
how symmetry adapted eigenstates may be built. These
are explicitly given in two cases. For the E ® e systems
usually considered in the literature it appears that, al-
though approximate, these models allow to recover the
property, recently proved numerically [8,10-12], that the
ground state may have a degeneracy and a symmetry dif-
ferent from that of the electronic state. We discuss next
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the introduction of additional vibronic operators which
still allow to retain the exact solvability of each model.

G’ ® e dynamical JT systems in cubic symmetry are
discussed in Section 5. The equivalence of F®e and G' Qe
vibronic systems mentioned in the literature [4,13-16] is
precisely established. Further we show how this equiv-
alence is broken when rovibronic interactions are intro-
duced: a rovibronic model for G’ ® e is exactly solved.

Finally in the last section approximate correlations
between our effective parameters and standard ones are
established in a few limiting cases.

2 Theoretical background

As explained in (I) a formal vibronic Hamiltonian may
be written as a linear combination with real parameters
of hermitian and time reversal invariant operators built
from electronic and vibrational operators

_ Io{ko {Ko} I
Hp=1. Y ytfoted iy
{s}{rv}
+ Z {S}tCe{nem} [{ne}E(Ce) % {?;}}V(Ce)](l“o)7 (1)

allindices

where the first term represents the purely vibrational
Hamiltonian and Iy is the scalar irrep of G which we shall
simply denote A; in the following. The set {s} = 51,82+ -
may include any mode s; appearing in the full vibrational
representation and the k; indices represent the additional
labels needed to fully specify the operators. The elec-
tronic operators are partly determined from the symmetry
properties of the considered electronic states. For a given
system the expansion (1) may be used to represent an
untransformed Hamiltonian, for instance that of the adi-
abatic approximation [4], or an effective one adapted to
the study of a given vibronic polyad [17,18]. The main
preliminary step is thus the determination of a complete
set of electronic operators and states.

2.1 Electronic operators and states

For the cases considered in this paper the electronic alge-
bras are the unitary algebras u(2). for an orbital dou-
blet and w(4). for a G’ (or Ig) quadruplet in cubic
molecules [15,16,19,20].

2.1.1 E-type electronic states

Whatever G we shall denote E, the irrep spanned by the
electronic states and we keep the classification of point
groups introduced in [21,22] and recalled in Appendix A,
together with a summary of our conventions for u(2) al-
gebras associated with electronic and vibrational degrees
of freedom. For an orbital doublet the electronic space of
states is a carrier space for the rrep [10] of u(2). which
subduces to E, in G with different possible bases mainly
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determined by the orientation chosen for the E-type irreps
of GG. A complete set of electronic operators is of the form
B-1g®) but as B-UEO reduces to the linear invariant
(N1 + N2)/+/2 which is a constant within [10], we are left
with 1-1g® = B-UE®) The indices p. depend upon
the algebraic chain used:

w(2)e O su(2
“(

u(2)e D su

)e Dso( e Pe=me, me=0,%£1
2)e D
0o =0 Cooy = A (2)

pe = lcCeoe {Ee =2Ce0. = Eyo.

where the FEj symmetries are those in Table A.3. For
groups in G () we have mainly two cases:

() k=2r , (i) k=n—-2r(k=2n-2r), (3)
where the substitution n — 2n is for D4 (n even) groups.
Groups in Gy being direct products of groups in G|y,
with Cs or C7 in all cases the electronic operators are of
" or g type; likewise for these groups As in (2) is replaced
by Aj or Asy. Groups in G(;rp) associated with linear
molecules will not be explicitly considered since their full
vibrational representation contains only F; or F1, modes.

Depending upon the orientation of the irreps of type
FE the index o, is denoted o or ¢ for orientations I and
IT respectively. For each case the expressions of the sym-
metry adapted electronic operators in terms of the su(2),
generators are given in Appendix A together with their
matrix elements calculated in the various bases:

u[(120)]e :f su(12)e 1)50(2)6
w2, S su2). > G (4)
[10] ! % | 1E,0.

with 0. = ¢ or . From now on the electronic operators
will be simply denoted E(1:£eCe),

2.1.2 G’ electronic states in spherical tops

It has been shown [20] that two algebraic chains are conve-
nient for the study of rovibronic interactions in G’ states of
spherical top molecules. Both use the fact that the elec-
tronic states span an drrep [10] of u(4), which can be
symmetry adapted in different chains. The first one in-
troduces the “natural” su(2) a2 so(3) sub-algebra via the
sp(4) = so(5) algebra:

u(4)e O su(d)e D sp(4)e D su(2)e D X
(10} | [10] | l

where X is so(2). when dealing with the standard basis
(p = me) or O%, T7 when working in a basis symmetrized
in the molecular symmetry group (p = G'o or p = G'G
depending on the orientation chosen for the irrep G’). O°
and Tds denote respectively the octahedral and tetrahe-
dral groups with their spinorial irreps. A complete set of
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electronic tensor operators may be built through a bosonic
realization of u(4). [23]:

O— N . O— A1 A2) (ke
[10—1] (A ,\2>(n/26) [10 1]E< 1A2) (ke)

or Coon s
(2) and C. labels
(A1 A2) ke Ce

(6)

with the sp(4), su

20) 1 Fy
3 A27F1;F2 (7)
<11> 2 B, Fy

and me = ke, ke —1--- — ke when X = s0(2)..

operator (10-1] (00 (O) is proportional to the u(4). linear

invariant and thus reduces to a constant within [10].
The second possibility uses the direct product property

The scalar

E x Ef = G’ and the known fact that E and E{ can be
embedded in two su(2) algebras:
u(4)e D su(4)e D so(4)e ~ su(2)s & su(2)s
10 o | TR S
(2)s @ s0(2) %

(me ,  mg)
u(4)e D su(4)e D so(d)e & su*(2)s @ su(2)x
SN G b
> G

| Eo., B0,
In fact, for the electronic states, both chains (8, 9) are
identical:

[[10], [10]5 me7[10]
= |[10], [1

e)) =110, 1
0)31E, [10] Ey;Gla)),

0)31Ed., [10]5E15,))

(10)
since the orientations of the E and Ej irreps have been
chosen so that the Clebsch-Gordan coefficients matrix re-
duces to the identity:

= =/

e 0. (@)

FEE) 5

I (11)

Besides the scalar operator, the electronic operators are
now of the form

(10— 1]E([)\1M1]k1,[)\2lt2]k2) or [10— I]E( Arplky S [Azpa]ka)

1.C.o1 0/0'2 ? (12)

according as one works either in chain (8) or in chain (9),
with symmetry labels:

[Apa]k1laCe, [AapalkaCL
[1—1]1,04,[0 0J0A,
[1—1]1,2E, [0 0]04, 3
0 0]0,04,, [1— 115 (13)
(1 —1]1,04, 1 - 11F

[1—1]1,2E, [1 - 1]1F .

In particular those needed in the following are the sym-
metry adapted generators of su*(2)s

iS4 /V2

[10-1] ([t 21]1311 [00]0) _

[10—-1] p((1-1]1, [00}0)
Y A, —iS_ /\/_
i 1-1]1, [00]0
o= gl Y = s, (14)
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and those of su(2) s
[10—1] E([OO];‘)1 1 Fll]i) (T +X.)/2
- 00J0, [1—1]1 ,
[10 1]E([ O]Al[ Fl]y) (2_ _ 2+)/2
o— 0J0 1
[10 I]E([OO]Al 1 Fll]z) Ez; (15)

where the pseudo-spin electronic operators S, and X, sat-
isfy the usual su(2) commutation rules. Bold face letters
are used for the first pseudo-spin electronic operator to
distinguish it from its counterpart for an E-type electronic
state. In both cases the bosonic realizations of the gener-
ators together with their matrix elements have been given
n [20]. In the following the wu(4). label [10 — 1] will be
omitted in the electronic operators.

2.2 Formal Hamiltonian expansions

With the operators introduced in the preceding section the
expansion (1) may be specialized to E and G’ electronic
states.

e Hyp for E,. electronic states

With equation (2) we obtain the expansion

_ A{ry} {rvty (A1)
Hp=1. Y (gttd vy
{sHro}

+ Dttt

{sH{ro}

+ Z {S}tEk{’{v} [E(LQEIC) X
{sHro}

F(1,042) o {?u}}v_(Aﬁ](Al)
{ro}y (Ex)1(A
{s} Vi ]( 1)7

(16)

where + (resp. —) stands for time reversal invariant (resp.
non-invariant) operators and for a given F, state, the
k values are those in equation (3). This form also in-
cludes groups which have only one E-type irrep, such as
Csy, D3, D3y, D3g and cubic point groups, for which we
have a (iil) case with kK =1 and n = 3.

e Hp for G electronic states

Several expressions can be given depending upon the elec-
tronic chain used. With chain (5) we may write

= Ai{ky {Kko}y, (A1)
Hp =1 Z oyt (s Ve
{S}{Kv}
+ ) wt"tHE
{sHrv}
C{rv 20)(3,C) o, {ro}1,(C)(A;
+ Z {s}t{ }[E( )(3,C) « {S}V, ]( )
{s,CHro}
F Y (O [EONERO) by @),
{s,CH{ro}

(20)(1,F1) o {??}}V_(Fl)](Al)

(17)

where the C' symmetries are those specified in equa-
tion (7). When no doubly degenerate modes are involved
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the couplings can also be performed at the su(2) level [20].
Using chain (9) gives (C = Fy, Fy):

>

{s,CHro}
Jr{S}tAQ{M} [E([1—1]1,0A2, [00]041)(A2) o {?:}} V£A2)](A1)

_ Ar{ro} {ro}y, (A1)
Hp =1, gl iy

[{s}

Jr{S}tE{;«w}[E([171]1,2E,[00]0,41)(13) < {?;,}}VJEE)](AI)
Fi{ko 00]0,041, [1—1]1F; )(Fy {Kro}y (F1)1(A1
it { }[E([ ] (I-11F)(F1) o {S}Vf 1]( )

Jr{S}tF2~{;~:v} [E([171]1,0A2, [1-1]1F1)(F2) « {?:}}V_i(rFa)](Al)

C{ky 1-1]1,2E, [1-1]1F)(C) L {xv} 1(C)1(A,
+ (ot Ol [BI-1125, 1LR)( )X{s} VO >}.

(18)

3 Untransformed Hamiltonian expansion
for an E, state

With equation (16) we can represent either an untrans-
formed or an effective vibronic Hamiltonian. However the
allowed values for £.C, in equation (2) as well as the struc-
ture of the vibrational factor depend upon the model to be
built. For a vibronic term in the untransformed Hamilto-
nian {#+}V(C+) is a function of normal coordinates ,Q(C*)
and we have only /.C. = 2E}), since for {.C. = 0As the
electronic operator is associated with the z component of
the pseudo-spin and is not invariant upon time reversal.
Restricting to terms which are at most quadratic in the
coordinates we can thus write

Js
Hyipr = I zs: {hwa (Ns + 5)
4 B[ EL2EN) SQ(Ek)](Al)}

+Zss,t01c2(Ek)[E(1,2Ek) X(SQ(Cl) > SIQ(CQ))(Ek)](Al)

s,s’

o (19)

For a given molecule, with symmetry group G, the active
coordinates, associated with the linear JT terms on the
second line, are determined for a given F,. electronic state
by the k values and with the knowledge of the full vi-
brational representation which can be found for instance
in [4]. Likewise the possible quadratic terms are first fixed
through the analysis of direct products C; x Ca of two
irreps of G. These products are given in Appendix B. In
all cases we have terms

E ss’

tAiEk(Ek)[E(172Ek) % (SQ(A'L) X o1 Q(Ek))(Ek)](Al)’

s#s’ i
involving nondegenerate modes A; (i = 1,2). For D, Cpy,
D,,q groups with n even which admit B; (i = 1, ) zrreps

we find

Z ss,tBiE%,k(Ek) [E12Bk)(,Q(BY) XSIQ(E%*k))(Ek)](Al)
s#s’ i
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for D,,, Cy, and
S
s#s! 1
for D,q.

Terms involving doubly degenerate modes are of the
form
ZssltEklEkg(Ek)[E(la2Ek) % (SQ(Ekl) % SIQ(EkQ))(Ek)](A1)7

s,s’

$Bi Bk (Ex) [E(172Ek) % (SQ(Bi) XS,Q(En—k))(Ek)](Al)

with the following conditions for the possible k1, ko values
for a given k:
o k1 # ko, hence s # ¢, k1 + ko #n/2 (n)

k= |k’1 — k2| or n — (k’l + k2) (271 — (k’l + kg)),
o ki =kys£s ors=5,k #£n/d (n/2)
k =2k; or n — 2ky (2n — 2ky),

where the values in parenthesis refer to D,4 (n even)
groups.
For cubic point groups we simply have

S s tEEE[B25) 5 (0B ., UE))(E))(A),

s,s’

This same expression applies to groups Ds, (3, having
only one E irrep whose symmetrized product contains FE.
Cubic molecules also admit three dimensional vibrational
modes which give the additional quadratic terms

Z s T BN EL2E) o ((QWF) 5, QUF3))(E)] (A1)

T
5,87,%,7

with (¢,j = 1,2). We note that quadratic terms involving
modes with the symmetry of the active coordinate

SS,tEkEk(Ek)[E(L?Ek) % (SQ(Ek) % S/Q(Ek))(Ek)](Al)’

are possible only for F,. electronic states as summarized
below:

E, E case

D,,Cpy r=n/6 k=mn/3 (i)

r=n/3 k=n/3 (ii)

Dng 7r=mn/3 k=2n/3 (i)

n even r=2n/3 k= 2n/3 (iii)

with n such that r and k& be integers. We thus obtain
three possible expansions for the untransformed vibronic
Hamiltonian for an E, electronic state.

e D, Chy, nodd

(20)

1o 3 e (o +

1 [EL2B) { 3 o tAEE) (QUAD x [, QB (B

s#s’ i
(A1)

+ Zss’tEkl EkQ(Ek) (sQ(Ekl) X s’Q(Ekz))(Ek)}} + - )

s,s’

)+ AP [EL2E) o o(EN](h )}
2

(21)
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e Dy, Cry, Dng, n even

i = 1.3 {peos (N

+ [E12B) { Z 5o tAERER) (L Q(AD 5 |, (BR))(Br)

2 ) B [B2E) 5 QUED) A0}

s#s’ i
+ ) (o tBF B (OB o QFg-0)) (B
s#s’ i
A
1 ot BraB0) () S,Q<Ek2>)<Ek>H‘ S

s,s’

(22)

with the substitution n/2 — n for terms involving B;
modes for D,q n even groups.
e 0, T,

Hyipr = 1. Z{

+ [B1L2B) & { 3 A EE QU QU E)
s#s i
+3 W tPEE(QE) x Q)

s,s’

(A1)
*Z AFF B ( Q(Fq»xs,Q(Fj))(E)H i

$,8",4,7

(N +95>+ tE[E(l 2E) o Q(E)](A )}

(23)

For groups in G(;y) ’,” or u, g labels are added following
the rules given after equation (3) and in Appendix B.

3.1 Vibronic Hamiltonian for E, electronic states

The expressions commonly found in the literature for the
so-called F ® e JT systems usually neglect all coupling
terms involving non active vibrational coordinates and
most often apply to molecules with symmetry group Cs,,
D3, D3y, or one of the cubic groups. Sometimes Ej = Fs,
systems are mentioned [4]. Relations between our parame-
ters and some conventional ones are obtained through the
vibronic matrix

A = 0 Ho 0 )

= ([ 012115 ol Hoinr[1 0]21E ). (24)

Various expressions are obtained depending on the orien-
tation used for operators and states.

e Orientation I

Both cases (ii) and (iii) (Eq. (3)) can be treated simulta-
neously. From the expression (A.6) of the electronic oper-
ators and with

o o (A1) 1

= = 50’ o)
(Ex Ex) :

r NG

(25)
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equation (19) can be written
_ gs
Hm'br - Ie ;hws (Ns + 5)
1
b8, VB g B (96)

V2 V2

with n = +1 (resp. n = —1) for case (ii) (resp. (iii)) and
where we set

Ek) — Z tEk Ek

+Z Ss/t0102 Ek)(sQ(Cl) X S/Q(CQ))(UE’C) —+ ..

s,s’

(27)

The possible Cp,Cy symmetries are those in equa-
tions (21-23) according to the case. Within the unsym-
metrized standard u(2)e D su(2)e D so(2). basis the
vibronic matrix writes in terms of Pauli matrices

I?I:&OZMS (NS+%>
G (Ek)

2\[ 2\[

where we used our conventions for |[10]3m)) covariant
states. Projection of equation (26) onto the E, state using
this time the u(2). D su*(2). D G symmetry adapted
basis associated with orientation I gives (Eq. (A.7))

ﬁ:&ozs:hws (Ns+%)

G, VY, (28)

V(Ek)

G, v L (29)

L b 1
2v3
e Orientation II
Likewise with the expressions (A.9) of the electronic
operators and with

Vel

g ad (Al)_i(g, )
(Ek Ek) B \/5 75—
where —G = 2,1 for 6 = 1,2, we obtain for equation (19):
—for case (ii) n = +1

(30)

I 9s 2 (E) (Ex)
Hmbr-[e;hws<Ns+2) 25 |4 * SJrVIk)
1
2

where we set for the vibrational operators (27) in orienta-
tion II

(S_vED L g v By (3

V(iEk) _ % (V( k) + Zv(Ek)) _ ZV(Ek)

(V(Ek) V(?k)) _

Ve - —ivE) - (32)

7
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The projection of H,;r (31) onto the E,. state using the
u(2)e D su*(2)e D G symmetry adapted basis associated
with orientation IT gives (Eq. (A.10))

~ . 1 R
H =75y E hws (Ns + %) — §(U+V(ffk) +U_V(Ek))7
(33)

—for case (iii) n = —1 we obtain

:Iezs:hws (Nﬁg) +

which gives for the vibronic matrix within the same basis
than for case (ii)

¢&W?Hsy€%,@@

~ N R 1 R R
H = JOZMS (NS + %) _ 5(07‘/(?10 + JJFV(JEFIC))'

(35)

3.2 Correlations with standard forms
3.2.1 Linear and quadratic vibronic coupling constants

We take equation (19), assuming that the conditions in
equation (3) are satisfied, and with the Wigner-Eckart
theorem we obtain for the linear coupling constants:

< eg;(fr) W(aEe )> tElc <Z?>

ov
s Q(Ek)

a o (A1), 2Exa  1E,.0. ([10]1/2)x
XZF (Ev BEv) L (L —11[10]1/2) 1E.o.
and for quadratic ones
e (Er) oV eg(E) ) _
P Q(cl)aélQ(cz) e
1C1Ca(By) a o (A1) o1 o2 (Eg)
Sst 102( Lk Z\/_ ZF E Ek (Cl 02) Oél
a,a’
< F 2Exa  1E,.0. ([10]1/2)«
(1 —1J1[10]1/2) 1E,.0..

The preceding expressions may be simplified with the in-
troduction of the isoscalar factors for the chain u(2), D

su*(2)e D G

P 2B 1B.o. ([10]1/2) _
(L —1J1[10]1/2) 1E,0"
x 2B 1B, ([10]1/2) o o (E;)

(L —1)1[10]1/2) 1E,

and taking into account equation (25) or (30).

(Ex E.) ol °

e
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3.2.2 Special case of the linear JT problem

As shown by equations (28, 29) the usual forms [2—4] for
the linear vibronic JT models are included within our ap-
proach. Some differences can be explained by our partic-
ular conventions for su(2) covariant states; others come
from different phase conventions for symmetry adapted
electronic states. From equations (27, 31, 34) we have in
terms of the pseudo-spin electronic operators and of di-
mensionless normal coordinates (; DFr = (% /2/hwy)

Eis gy (36)

HJTL/h = Iews(Ns+1)+sDEk (S—sq(

for an (ii) case and

Hyrp/h = Lws(Ne+1)+.DP (51 g P48 g ) (37)

for an (iii) one. They commute respectively with

jz:sez_sz:_QJz_Sz

case (ii)
case (iii) (38)
where ¢, = —2J, is the oscillator angular momentum
and J, one of the generators of the u(2), vibrational al-
gebra. The second case is that usually considered in the
literature [6]. We first take as basis for the space of states

(v =2j)

{[oipr); =[[10] %me»l[v 0] m)) =1 0] LE,7))|[v 0]j m)),

whose members are eigenstates of j, (resp. j.) with eigen-
values 1 = 2m — m, (resp. i = 2m + m,). The properties
under time reversal

KHyr K~
i ogme»uv 0l m)) = [10)3

1
[10]51E

= HJTL; chzK:_l = _j27 K:jzlc_l = _jza
me))|[v0]j —m)),

Kl 0] 1E,7))[[v0]j m)) = —a)l[v0lj —m)),

allow to recover the known properties [13,24] that the
eigenvalues of H jry, only depend upon || (resp. |i]) and
that each one is at least doubly degenerate. Thus the
eigenstates of Hyry for case (ii) are linear combinations
of the states (g > 1/2)

11 N T
[LO]5 M0l —5)) = Bjy
1 A+s., -
105 = SN0l —5=)) = s (39)

KBiar = 1015 — w0l ~ 222 =7,
Ke = 105200 22 2) =3, (40)



F. Michelot and M. Rey: Effective Hamiltonian approach to doubly degenerate electronic states

Likewise for an (iii) case we have (u > 1/2):

11 e
|[10]5§>>|[UO]J 5 2)) = Ojur
1 1 -3
|[10]§— §>>|[v0].7 TQ>> = Pju+t (41)
11 o opt s
Kejut = |[10]5 - 5>>I[v0]J - ) = ju—
11 b
Koju+ =1 0]§§>>|[v 0lj — > 2)) = Gju—-  (42)
We can write
(Bo) _ _; B _ L oy (3) USINE)
sq v sq q \/5( 1 ? 1 )
(B (Er) _ L([w]v( ) Z[O—I]V(%l))

1
_ _ 3)
=isq 5 = 7 1 _
where 10V (2) and 0-1V(2) are su(2), irreducible tensor

operators with su(2) reduced matrix elements

([’ 0157 [|PV )| [w 0]5) = i([w 01|~V )] [o" 0]37)

1
[(2.7 +1) (2.7 + 2)] Oy fu41-

This allows to obtain close expressions for the matrix ele-
ments of Hjpp for arbitrary E, X e cases in the form

—ih (DE* /2

(bjr 1| HirL]Bjas) =

D) H
x(2j+1)2C2 Ty 2 (43)
3 5 (U+3)
<5 —% |HJTL|()0_]M+> ih éDEk/\/5
WD =
2ji+12C2 T 2 (44)
3 - 0U—3)

where the su(2) Clebsch-Gordan coefficients can be found
for instance in [25]. The matrix elements (43, 44) have
been given for cases of type (ii). It can be shown that
those for cases (iii) can be deduced from the preceding
ones with the substitutions i — u, @ — ¢ and ¢ — .
However we will see that this equivalence between both
cases is lost when higher order interactions are taken into
account. Also it is easily checked that with (43, 44) one
recovers, within a phase, the famous tri-diagonal matrices
of Longuet-Higgins et al. [24].

For completeness we give below the symmetry of the
degenerate states and indicate how symmetry adapted
bases can be built for all cases. To our knowledge only
special cases have been considered so far. We note that
under the action of the Pr operators associated with the
generators X and Y (Appendix A) for groups in G(;) we
have

72
T Px@jutr = e 2 i

Pyojui = (71)2j+1 Piu—s

PxPjay =€
PPy = (1)

sDJlH-’

254+1
cpjp,—a
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and identical relations in terms of ¢ and ¢. This allows first
to determine the symmetry [, of the degenerate states
associated with the sets 9, , Emi and @+, ¢ju+. These
are given in Table 1 for groups in G ;). For groups in Gy,
since the active coordinates are always of type ’ or g the
overall symmetry is always that ’, ”/, g or u, according to
the case, of the electronic state. Next with the matrices
for the irreps in orientation II symmetry adapted states
are built. We obtain:

e When p or i are associated with an E-type irrep of G

Dinpo =1 iy, Pjup,—5 =1 2 ) (45)

where k = i (resp. K = p) when & = @ or ¢ (Egs. (39,
40)) (resp. ¢ = ¢ or ¢ (Egs. (41, 42))). The &, E, & values
are those in Table 1 and —6 = 2,1 for 6 = 1, 2.

e When p or i are linked with an A or B-type irrep of G

Bjry, = i Dy + ()P D) /V2
QJKIE = i2j(¢jn+ - (_1)2j+1 @ —)/\/5

@ and k have the same meaning as before and the k, I
(A or B) values given in Table 1. We note that all phases
have been settled so that under time reversal

K@antFi = @antfé'a K@j/{[‘i

(46)

:@jnf’i i = 172

which leads to real matrix elements (Eqgs. (43, 44)) for
Hjrr when expressed in the symmetry adapted bases
(45, 46).

4 Effective Hamiltonian for E, ® e,
dynamical JT systems

We first underline that we extend somewhat the usual
terminology for F ® e cases in that we do not assume that
the twofold degenerate mode is associated with an active
coordinate. This will allow a more general approach and
also to discuss systems similar to those F,®e,. encountered
in our previous work (I). Following the method presented
there we can write quite generally

ﬁvibr = Z { T

vl A1(A1)I [n vfzv]V(jv,lu A1)

{nl’}{nv €
{nwv,juv,lv}
+ t]{j}’f;f:l(’Aﬂ [E(1042) 5 1w —nuly) (o A2)] (A1)
vl B (E Ny —T0 "
+ t?{nu}{rfu(} k)[E(1,2Ek) « | n 1ot Ek)](Al)}
(47)
where ™ ~"21)0. 60 Bo) are vibrational operators for the

e mode, with m; = my = n, for those appearing in
the effective Hamiltonian and we recall that j, can take
the values 0,1--- ,n, and hence that ¢, is even. In equa-
tion (47) operators with symmetry A; and Ej (resp. As)
must satisfy (—1)7»%/2 = 41 (resp. (—1)7v—&/2 = —1).
The matrix elements of the various operators in H,;;,- can
be computed within a coupled vibronic basis

|[1 O] 1E,, [U O]]gpmpevaev» (Feﬂ =E, x Fv)’ (48)
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Table 1. Symmetry of degenerate states of Hjrr,.

G Fr® e K Tey o G E,® ek K Tey o
Csv,Ds E®e pu=3p+3 E 2 Cev,Ds Ex®es p=3p+1 E, 2
0,Ty p:3p+g Aq, As ,u:3p+g Aq, As
p=3p+32 E 1 pw=3p+3 B 1
Dyq Ei® ez u=4p+% Eq 1 Deq Ei®es ﬂ=6p+% Eq 1
p=4p+3  Bs 1 p=6p+3 Bz 1
p=4p+3 E3 2 f=6p+32 Es 1
L=4p+% Ei 2 i=06p+ % Es 2
Es®es p=4p++ Es 2 p=06p+3 Es 2
p=4p+3 E; 2 fL=6p+ i E; 2
p=4p+3 Ey 1 E:®es [=3p++ Es 1
w=4p % Es 1 ﬂ:3p+% By, By
Cs50,D5 Ei1®ex [=5p+3 Ey 1 p=3p+32 Es 2
L=>5p+3 E, 2 Es®es p=3p++ Ey 2
= bp g Aq, As w=3p % Aq, As
L=5p+ 1 Es 1 p=3p+2 E, 1
ﬂ=5p+% £y 2 E5 ® es M=6p+% Es 2
B ® ey u:5p—|—% Es 2 p:6p—|—% Es 2
p=>5+3 Ei 2 p=06p+ 32 By 2
p=>5p+32 A, A p==6p+2 E 1
p=>5p+2 E; 1 pw="6p+3 Es 1
p=>5p+ % Ey 1 p=6p+ Es 1
Cév,Ds FEi1®ex [=3p++ B 1
E=3p+32 Bi,B;
L=3p+3 E; 2
associated with the algebraic chain that the operators of degree one with respect to the u(2),
algebra generators
w(2)e ® u(2)y D su*(2)e ® su*(2), D G
[10] [’U 0] % ] — % Fevaev (49) 1 —Sl]v(l,QEk) _ 1 —Sl]v(1,2 Ek)’ (50)

and are given in Appendix C. We note that this approach
would also allow to take easily into account, within a
polyad scheme, the coupling of the e,» mode with another
one. However as in (I) we look for exact solutions of ap-
proximate models to which higher order interaction terms
can next be added and for this the coupled basis is inap-
propriate.

For a given E, electronic state and an arbitrary e,
mode the terms on the first two lines of equation (47)
always exist but such is not the case for those on the
third line. We thus established first a classification of JT
systems for common point groups.

4.1 Classification of E, ® e, systems

We first notice that for a given F, symmetry we have
in general at least one vibrational mode with the same
symmetry type in the full vibrational representation. This
means that quadratic terms involving that mode are al-
lowed in the untransformed Hamiltonian expansion and

enter the expansion (47). This determines E, ® e, systems
which are classical ones only if r = n/3 (r = 2n/3 for Dayq
groups) (see Appendix B and Eq. (20)). This also includes
the standard E ® e cases (and E, ® eg, = ' or g) for
C3y, D3, D3p, D34, O, Op, Ty.

We also have in general the possibility ' = n/2 —r for
Cap, D2y, groups in Gy and associated ones in G'(;y) since

En_. X En_, = A1+ Az + Ej.

For Dspq groups the substitution n/2 — n must be made.
We thus have a second class of JT systems E,. ®e,, /o, (n
even) (resp. E, ® e,,—,) for which the operator (50) exists
but these are classical ones only if » = n/6 (resp. r = n/3)
(see Appendix B and Eq. (20)).

It can be shown that for all other F, ® e, systems

either there is no term
[E(L?Ek) % [no *Zu]v(jmfv Ek)](Al) (51)

at any order in the effective Hamiltonian expansion (47),
or it requiers a minimum n,, value (hence one of j,) greater
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Table 2. £, ® e,» JT systems for groups in G .

Group E,®e. FEr JTL Casetype Jmin,fmin Group FE,®e. FEr JTL Casetype jmin,lmin
Cs0,D35 E®e E * A (1,2) Dea E1®es Es X -
O,Td EF®e FE * A (1,2) 7“7&3 Fi1®eq FE> X -
Dyq Ei®e1 E2 A (1,2) Ei®es Ea B (1,2)
r# 2 Fi ®e2 FEs * X - Fy® el FEy C (2,4)
F1i®es E> B (1,2) Fr ® en FE4 A (1,2)
F3® e E> B (1, 2) Fr ®es FE4 X -
FE3 ® ea FEs * X - Fr®eq FEy * B (1,2)
Es®es B A (1,2) Ex®es By D (2,4)
C5v, Ds Fi® e FE> A (1, 2) Fs® el FE4 D (2, 4)
Ei®e; By % D (2,4) Es®es Es B (1,2)
Er ® ey Eq * C (2,4) Fi®es FEy X -
Fr ® eo E1 A (1,2) Fi®eq FE4 * A (1,2)
CGv, Dg Fi1®er E> A (1, 2) Fi®es FE4 C (2, 4)
Ei®e; By % B (1,2) Es®er B B (1,2)
Fr®er E> B (1, 2) Fs ® eo E> * X -
Fr ® en E> * A (1, 2) Fs ® es E> X -
Dsq Ei®er Eo A (1,2) Fs®es FEo X -
r#3 Fi ®es Es * X - Fs ®es Es A (1,2)
than one. These various possible cases are summarized in  we have
;c)}l}gii;izsc)(')lumns of Table 2 (the * indicate the active co [E(172Ek) LD ;”V(I’Q Ek)](Al) (S — S,

o . ® e, cases.

We first remind that the expressions of the symmetry
adapted su(2) generators based on an E symmetry type
differ according as we deal with an (ii) or (iii) case (Eq. (3),
Appendix A). For an E, ® e, system as the electronic and
vibrational E symmetries are the same we have nn’ =
—u(2)i/(2) = 1 and the interaction operator of lowest de-
gree in elementary operators takes the form

[E(2E0) By (2B0)(4) = (8,7, + 8,7,
1
= §(S+J7 +S_Jy)
where we introduced the ladder operators S+ and Ji of

su(2). and su(2), respectively. As a consequence a zeroth-
order model

70 7A1A(Ar) 70,045 (A1) [1—1] (0,0 4;)
Hoivr = stiopoy - ot sty v

+ t41[10}1?i§,142)[E(1 ,0A2) % [1—1]V(1 0A2)](A 1)

b P [B2E) DB, (52

is given, omitting temporarily the constant term, by:

Aa
FH iy [h =0u(NeA DA S2 T T (S4 T 4+8_1). (53)

Systems with I?gibr of the form (53) will be referred to as
A-type cases in the following.

e F,® €n/2—r (Er Y en—'r')-

This time the electronic and vibrational operators are nec-

essarily of different species (nn’ = —p(2)p/(2) = —1) and

1
= §(S+J+ +S-J-),

hence for HO

vibr

(52) we obtain

“HOY,, /=@y (Ne+1)+A.S. J. + (S+J++S J_). (54)
This will be referred to as B-type case in the following.

e Other F, ® e, cases.

For the common point groups we see from Table 2 that
the first allowed vibronic interaction term of type (51) is
characterized by (jy, £,) = (2,4). Thus in the zeroth order
model (52) the last term is replaced by

~24E E _
{2}{§§ O[E(2E) o 22124 B0 (A1),

with
RAYELE) = ()2 1+ J2)/2V2,
W2 = J3)/2V2,

In fact within the same order of approximation we should
include terms involving the vibrational operators

[2 —SQ]V(QA b;k) _

22100 A1) [2-211(2041)  [2=2],(1,0 42)

which represent anharmonicity corrections to those in-
cluded in HUW We postpone their introduction to Sec-
tion 4.5 where we consider the additional terms which may
be taken into account without breaking the exact solvabil-
ity of the various zeroth-order models.
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Depending on the r,r’ values it appears that we have

again two different expressions for H
When ju(2)p(4) = —1

vzbr

5
FHO,, B = 0s(No+1)+A.S. T+ = (S+J2+S J2), (55)

and when p(2)u'(4) =1

5
THy /h = 0y(No+1)+X. 8. 0.4 5 5 (S4T3+5-J2), (56)

which will be denoted case C and D respectively.
Finally the X-type cases for which no operator (51)
can be built simply give
HY?

vibr

= Mo + his(Ns + 1) + hA, S, J.. (57)

The lack of any vibronic interaction term with Ej, symme-
try type is explained by the analysis of the powers of E,.
irreps [22]. It covers two different physical situations. One
in which the untransformed vibronic Hamﬂtonlan contains
only odd powers in the (active) coordinate Q) the
other in which no power in this coordinate can be of By
symmetry type. In both cases vibronic terms involving
the ! ~UE@L2Ex) electronic operators can only appear in
a multimode case.

4.2 Eigenvalues and eigenstates for A and B cases

For both problems it appears that the Hamiltonians
£ HO. (53, 54) have exactly the same forms as in the

vibr

E®e cases studied in Section 7.4.2 of (I) and denoted there
cases a) and b) respectively. So, they can be diagonalized
through the same unitary transformation U expressed in
terms of two conserved quantities [26]

A=8,+J,; F=(SyJ_+S_J.)?* for case A

A=-S.+J.; F=(S.J +S_J_)* for case B.

(58)

The eigenvalues as well as the unsymmetrized eigenstates
have identical expressions which we recall below:

N A -
Byt = hdo + hay (2 + 1) F hTF + hA Qe (j,m), (59)
with
!2ﬂ:(ja771) =

=306 -

+02(j,m)
m)(j +m+1) + 62 (er%) 11/2
:%[(uﬂ)(uiuz)+5§(ﬂ+1)211/2, (60)

and where 6, = A,/ and j = v/2, £ = 2|m/. In terms of
the basis states
. 1. )
[EN[w0ljm)) = |[10]51E:7))|[v0]jm))

me))|[v 07 m)),

o (61)
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where |+)) are the F, electronic states in orientation II
and |[v0]jm)) the standard su(2), covariant states for
the e, mode, the unsymmetrized vibronic eigenstates for

A-type systems read (m:j—1,---1/2 or 0)
T = UTH)) v 0] m))
= cos|0(j, m)][+))[[v 0]j m))
—sin[0(j, m)]|—))|[v 0] m + 1))
HE) = U ) olim + 1))
= cos[f(j,m)]|=))|[v0]jm + 1))
+ sin[0(j, m)][+))[[v 0] m)) (62)
TR = U N0l —m—1))
= sin[0(j,m)][+))|[v0]j —m — 1))
= cos[0(j, m)]|=))[[v 07 —m))
B, = U wolj — m))
= sin[0(j, m)||—))[[v0]j —m))
+ cos[0(j, m)]|[-+))|[v 0] —m —1))  (63)
with
‘ B 1/2
mqwmmnjx”"”mifZTIﬂN?]
' . 1/2
sin[0(j, m)] = 206.m) ;(Z(S(Z](,ZT 1/2)/2] ©)
and

m)] = sin[0(j, —m — 1)].

Those for B-type systems _@;Zi (i = 1,2) can be deduced
from the previous ones with the substitutions

[E)[[v0l7 +m)) —
F)Iv 0l + (m+1))) —

The uncoupled states are still

cos|6(7,

[N 0] £ (m+1))),
[T 0l +m)).

DI 0l54)) = [t 0]21E N 0l54)),

|=Nv0li —35)) =111 0]21E 2)[w0lj — 7)),
for +ﬁ8’ibr and
|=N[v0lj5)) =1 0]%1ETQ>>|[U 017 7))

D10l —4)) =111 0] LE 1) 0l — ),

— 770 . . .
for ~H,,,., with respective eigenvalues

Y )\z .
tE; = hdo + hids (2] + 1) & h=j. (65)
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Table 3. Transformation laws for A type eigenstates.
PX+@;7172i — ity +§,](71r3i P)ﬁ@ifi — eir(tH )Y +,j,](72r3i
Pytol) = (-1)FH @) ptet) = (<)@ gl
Pytwg) = (—)¥ o Pyt = (—)¥ P
g _ +52 o2 _ +g5M
K+y7jm+ - 7Lqjjm-&- K+y7jm+ - +qjjm+
+5V _ _+g®@ +52 _ _+g
KAl = —+ul) Ko = o)
Table 4. Transformation laws for B type eigenstates.
Pxfklz’,(izi _ il —ir (1) —f,ﬂ(}ii pr@](izi — il ir(e+ 1) *@‘iii
Py ol = (—1¥H gl Py w2 = (—1)%+ gl
Py = (1 a Py = (1 B
-5V _ —-7©@ -5 _ -5
K ij-k wjm-‘r K ij+ ij+
_=(1) _>(2) -2 -
K Wj - - ij— K Wj — ij—
We note that, assuming A. > )., we obtain in first ap- with corresponding symmetry adapted eigenstates
proximation cos[f(j,m)] ~ 0, sin[d(j,m)] ~ 1 (Egs. (60, 1
64)). The eigenvalues (59) for all pair of states I[1 0]§1Er, [v0]j; 24, A1) =
o+1 . .
[+ |[0 0] £ m)), (66) AN 0l — 1/2)) + |-)[v 015 1/2))]/v2
1
10]=1FE,,[v0]j; 2, As)) =
may be written iEjmi ~ Efj%r + A% E,;, where I ]2 rs 0003 2, A2))
) N0l —1/2)) = [=)[w0li1/2))]/v2,  (70)
0 3 e A ~
EO) = hXo + hos(2) +1) + hm, (67) for *HY, and

is the usual expression [13] for the energies in the weak
coupling limit (see also Sect. 6) and in first order

t

A2 (j—m)(j+m+1)
+ L _
AT Eyipr = 1% ( 1/2) + m#—1/2
_ hj\i(j—m—i—l)(j—i—m)

We give in Tables 3 and 4 the general relations which
allow to build, for arbitrary systems of A or B-type, sym-
metrized vibronic eigenstates for groups in G(;). When
dealing with groups in G(;5y with E,, electronic states
and e, g modes we have for the third Z generator the ad-
ditional relation:

P = (DD S, (68)
where (7 = aor 3) (—1)7 = +1 (resp.(—1)" = —1) for ’ or
g (resp. ” or w) irreps. As an illustration these functions
are detailed in Appendix D for Cs,, D3, D3y, Dsg, O, Oy,
T4. Moreover we underline the special case m = —1/2 for
which we have two nondegenerate eigenvalues

5 PV
TE; 1y = hAo+ho (25 + )—h7r+ hf@j +1)

_ S o e
Bj 3 = hAo+hou(2] + 1)+h7 £ h70 (25 +1) (69)

(10151 Er [0 0)js 24, 1)) =
POl - 1/2) + )00 1/2)]/V2
LOJ51E,, [0]; 2, Ba)) =

[N 0)j = 1/2)) = [+)[w 0l 1/2)]/v2,  (T1)
for ~HY,,.. For groups in G(;1) one must add a 7 label in
equations (70, 71). We will show in Section 6 that these
results allow to recover in a straightforward manner that
the ground state may be of A; or B; symmetry for these
JT systems.

4.3 Eigenvalues and eigenstates for C and D cases

The method used to solve the eigenvalue equation for
+HY, (55, 56) is similar to that used for A and B cases
and is detailed in [26]. In both cases the Hamiltonian is
written as a linear combination in the generators of an
su(2)(P) algebra and as a function of an operator A (or
A) which commutes with the su(2) generators and £H?,, .
For case C the A operator is given by

A= g0 _oll-1y042) — 7 4 o5 (72)

and for the su(2)(P) algebra, isomorphic to that of a spin
1/2, we have

1
NG

_ L

P,=—=8,J,P =
i i VF

S_J2, P.=85, (73
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where the F operator is expressed as

F=(S4J2 +5_J2) =
1
(5 + Sz)[‘]2 -

N

(Jz + 1)Jz][J2 - (JZ + 2)(Jz + 1)]

(/. —2)].
(74)

(Jo = DT = (- =

The vibronic states (m=—j,—j+1---j —2)

D0l m)) s [=))[[v0lim +2))
=P[Ol —m)), [H))[v0]j —m —2))
are associated with the eigenvalues A(m) = —(m + 1) for

(75a) and A(m) = (m + 1) for (75b) of A and both with
the eigenvalue

(75a)
(75b)

(G—m)(j+m+2)!

o= Gy
of F. We can then write *H?, (55) as
+ 1ié {%\/?(Ppt P_)+ SZAPZ} ()

with &, = . /4. A unitary transformation of the su(2)(P)
algebra leads to [26,27]

Az <
UTHY, U™' = hoy(Ny+1)— h +h200(F, A)S., (78)
where the operator £2(F, A) is given by
1 .
QF, 4) = 5 [F + 824712, (79)

Within basis (75) we obtain the doubly degenerate eigen-
values (except for m = —1)

- Az = .
JrEjrni - h)\O + h(:}é(Q_j + 1) - h? + hégi(]7m)7 (80)

where ) is associated with the first term in equation (52)
and with

Q:t(ja m) -

_ 1 (J—m)!(j+m+2)! 52(m 2
=% (j+m)!(jfmf2)!+62( +1)

+£02(j,m)
1/2
(81)

which can also be expressed in terms of the quantum num-
bers v = 2j and £ = 2|m/|. The U~ operator is given by
U™t = (I+k'Py)explk.P.](I — kP_)

= (I — kP_)exp|-k.P.](I + kT Py), (82)
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where
5 - 1/2
k__2(2(]—",A)—5ZA__ QF,A)—-6,4/2
VF QF,A)+6,4/2
k,=1In 20(7, A~) ] . (83)
NF,A)+6.4/2

Unsymmetrized eigenstates of *ngbr (55) are obtained
with U~! acting on the states (75) (m: j — 2,5 —

3---1/2 or 0):

L = U )| 0)im))
= cos[0(j,m)]|+))|[v 0] m))
— sin[0(j, m)]|=))|[v 0l m + 2))
) = U ) 0lim o+ 2)
= cos[0(j, m)]|=))|[v 0] m + 2))
+ sin[0(j, m)]|+))[[v 0] m)) (84)
= U )0l —m - 2))
= sin[0(j,m)][+))[[v 0]j —m —2))
— cos[0(j, m)]|=))|[v0]j —m))
L = U DIl —m))
= sin[0(j, m)][=))|[v 0]F —m))
+ cos[0(j, m)][4+)[[v0]j —m —2))  (85)
with
_ - 1/2
cos[0(4,m)] = Q(j’mégzéz;m) 172
235 5’ 1/2]" (%6)
sinf9(j, m)] = “’%&;52? )/
and cos[f(j, m)] = sin[f(j, —m — 2)].
Special cases
e For m = —1 the states in (75) reduce to two and we
have one-fold degenerate energy levels
YEj 14 = hho + hos(2) + 1) — h% + ﬁgj(j +1), (87)

with the corresponding eigenstates

Ty = %[I+>>I[U 0j = 1)) + [=)[v 05 1))]

= %[H))I[UOU = 1) ==l 0l 1)) (88)

e There are two sets of uncoupled states, associated with
the zero eigenvalues of the F function (74):

W0l 5)) 5 |=)I[v0li = J))

N0l 7 = 1)) [=DI[w0lF =5+ 1) (89)
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These are eigenstates of TH ;Z with eigenvalues respec-

tively given by

1 )\z .

1 ~ . 5\2 .
Case D is treated along the same lines through an

su(2)(P') algebra realized as

—_

1
P, =—=8,J2,P =—=5J*, P =5, 91
TVE VF o1
where the F invariant operator
F=(S4J3 +S_J2)? (92)

can be obtained from F (74) with the interchange 1/2 +
S, < 1/2 — S,. The degenerate states (75) are replaced

by (m=—j,—j+1j—2)
|=DIw0lim))  [+)l[v0ljm +2)) (93a)
D[ 0l7 —m)), [=)[[v0]lj —m —2)).  (93b)
They are associated with the eigenvalue f(j,m) = f(j, m)
(76) of F and A(m) of A given by
_ _[1—1]E(1,0A2) + 2[1 —Sl]v(l,OAg) — Jz _ 2527 (94)
with A(m) = —(m+1) for (93a) and A(m) = (m+1) for
(93b). So we have for “H?,, . (56)
~ S\Z
Hmbr = th(NS + 1) + h?
(1 = S
+ hé {5\/}(13; + P )+ 5ZAPZ’} . (95)

where 6, = X, / 5. It can be diagonalized through a unitary

transformation U’ of su(2)(P’):

VT

U'~HY, U = M;S(NSJrl)Jrh?JthéQ(}‘, A)S. (96)

where the operator £2(F, A) is given by (79) with the sub-

stitutions 7 — F and A — A. Within the basis (93) we
obtain the eigenvalues

Y 5\2 N .
m) is given by (81) The corresponding un-

symmetrized eigenstates of ~H, SW (56) are obtained with

U'~! acting on the states (93), U’~! being deduced from
U~1 in equations (82, 83) with the substitutions Py —
P., P, —» P.,F — F and A — A. This leads to states
_@(Zi (i = 1,2) which can be deduced from those +LT/j(n)1i
(84, 85) through the substitutions

=N 07 £m)) — [£)[[v0]j + (m+2))),
FNW 0L £ (m+2)) — [F)I[v 0] £ m)).

where 24 (7,

(98)

479

cos[f(j, m)] and sin[f(j,m)] are still given by (86). The
same rules apply for the special case m = —1 with equa-
tion (87) replaced by

X j\z S .
TEj_11 =h o+ hos(25+ 1)+ h? + h§j(] +1). (99)
The uncoupled states are now
=D 017 5)), HDI[v 0l =),
=)0l 7 — 1)), +NIv0lj —5+1)), (100)
with associated eigenvalues
_ e A
Ejj = hdo + hws(2j + 1) — b,
X S\Z .
TEjji_1 =h N+ hws(2j+1) 757(‘7 -1). (101)

As in A and B cases, on the assumption that As > 5, we
obtain for the states (66) the energies (80, 97) in the form

iEjm:l: = E(O) AiEm'br, with E( )

vibr . vibr
and for cases C and D respectively

as given by (67)

hé* f(j,m)
tE . = _
AT Eyipr = 1 )\ (m+1) + m# —1
_ h &2 f(j,—m)
A Eyibr - = ’ e 1
br =g om-1) + m #
with f(j,m) as defined in (76).

The transformation laws of the eigenstates of ngibr
under the action of the groups generators are given in
Section D.3 of Appendix D with an application to the
determination of symmetry adapted vibronic states of C-

type JT systems in symmetry Cs,, D5, Dsp, Dsq.

4.4 Eigenvalues and eigenstates for X cases

This case is similar to that considered in Section 7.4.3
of (I) for A, = A, = 0 since the zeroth-order model (57)

reduces to Hgibr = ha, (Nerl)*S\zstgz/? with a pseudo-
spin-vibration interaction term. The subspaces
10]33, [v0li5) = Py
4103 2/ + 102
+{|[1OJ%%,[UO1J§>><+>¢, (102)
and
103 L, [00)j — £) = O
Hf |[ 29 ' 3 +> 103
{I[lo]% Lol = op, (19

are respectively associated with the doubly degenerate
eigenvalues

- A,
By = do + s (2] + 1) £ h5 (104)
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Symmetry adapted eigenstates for all X type cases can be
built from the relations
Py My = etiltr'+mv(+),
PxGloy = eﬂFi(“/—T)w(—)saJr
PyMe, = (—1)2HMg  KHp, = Hg_
Py, = (_1)2j+1(—)(p_ , Ky =Gl
It can be checked that for these systems all vibronic levels
have an F-type symmetry.

4.5 Introduction of additional terms

At this point it may be asked whether the previous zeroth-
order models may be refined without losing their exact
solvability. To the next order in elementary creation and
annihilation operators we first find the two purely vibra-
tional anharmonicity operators

N, —1)/2V/3,
2 ZQ]V(Q’OAl) = (J?>-3J%)/V6

_ [% <N7 + 1) 3J§]/\/§.

The operator 2 _52]]/(2’4‘41) can only appear for ey (resp.
e3) modes in Dyg4 (resp. Dgq) symmetry and breaks the
exact solvability of X-type systems.

Vibronic terms involving

[2 ;2]]}(0,0 A1) — Né(

_ 1 _
[2 s2]v(1,0A2) _ §(Ns _ 1)[1 81]V(1,0A2)’
can also be included in all cases and bring an anharmonic-
ity correction to the pseudo-spin-vibration interaction. Fi-
nally for A and B-type systems we also find vibronic in-
teraction terms involving

1

[2 —2]V(1,2Ek) —_ _(Ns _ 1) [l—l]V(l,QEk).
s 2 S

In some cases, for instance in Cs,, D3, O, Ty symmetry,
there exists a vibrational operator s ZQ]V(QAE’“) which is
also of degree four in elementary creation and annihilation
operators. However the exact solvability is lost when the
corresponding vibronic interaction term is included in the
Hamiltonian expansion.

For the various types of effective vibronic Hamiltonians
we simply give below the modified form of H,;,, and the
corresponding eigenvalues.

4.5.1 A and B modified effective Hamiltonians

We set Hyipy = HY, + H} “ipr Where Hgibr is that in equa-

vibr
tion( )and Hmbr given by
~ _ 30,0A1(A1)[2-2]4,(0,0A
Hpy = stioyra) 2 Aoy
72,041(A1)[2 - 2] (2,0 Ay)
+ sty v
O ks A9y

71 2Ek(Ek)[ (1,2ER)

+ sty x 2722 E01(A) - (105)
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According as we deal with a A or B case it may be written
in the form

~ N [ Ny
iI{mbr = h/_L(O)N (Né - 1) + hﬂ(Q) |:76 (75 + 1) - 3J22:|

+ M (N, —1)SJ

+ A (N, — 1)5(5%73F +S_J1). (106)

With the property J, = A — S, (resp. J, = A+ S.) we
can rewrite Hy;p, as

+ 77 770 + 77
Hvibr = Hmbr + Hmbr’

where TH?

vibr
the eigenvalue equation for iHBle, that is expressed in
terms of the conserved quantities (A, F) (resp. (4, F))
(Eq. (58)) and of the generators of two spin 1/2 algebras

su(2)(M) (resp. su(2)(N)):

are in a form similar to that used to solve

+ﬁ'uib7‘ = ms(Ns + 1) + hﬂ(O)Ns(Ns — 1)
X AW N, (N 3
_pIE_KpIE _ q(2) |18 [ s _ 2_°2
h4 h4(NS 1)+hji [2<2+1> 3A 4]
+h[Ae + AP (N, — 1)) {%ﬁ(M++M)++S§1>AMZ} :

with R 3
. 460 + A (N, 1)

o = 2O 2
)\z‘i’)\;(c)(Ns*]-)

Likewise for ~ H,;,» we obtain

~Hyivr = hios (N + 1) + B O Ny(N, — 1)

Ao AW N, [N, —2 3
7z 7z _ ~(2)|2ts [ ZYs _ _=
+h4 +h 1 (N — 1)+hia [2 < 5 +1> 3A 4]

A+ A (N, — 1)] {%ﬁu\qm) + 5§1>ZNZ} ,

with 3 .
. — 6@ + AN, 1)

g — 2O
)\a; + )\;(cl) (Ns - 1)

T Hyipr and ~ Hyp, can then be diagonalized, as described
n [26,27], through a unitary transformation of the alge-
bras su(2)(M) and su(2)(IN) respectively. This leads to
the eigenvalues

EBjme = hho 4+ hog (25 + 1) + b 92525 — 1)

Ao A0
¥hz 1 (27— 1)
1\?> 3
+ hi® j(j+1)—3<m+§> —11

+ R + A0 (25 — 1))+ (,m),
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with
1 1 9 1/2
=+ (G—m)(G+m+1)+ 5L (5)> <m+ 5) :
and
. N6+ 325 -1

Ao + A (25— 1)

The corresponding eigenstates can be obtained with the
method presented in [26] or directly from the results in
Section 4.2 with 24 (j,m) as given by (108) and the sub-

stitution 0, — jE(ﬁigl)(j) in equation (64).
For the uncoupled states equation (65) is replaced by

— a®)j(25 - 1)

(110)

B = hAo + has (25 4+ 1) + (2
£+ A0 - 1)),

and for the special case m = —1/2 the energies (69) be-
come

TEj_1j0x = ho + hie(25 + 1) + hii2;(25 — 1)
hr « 3
-7 P + 1 [j(j + 1)—1]
B o~ -

+ — e + AW (25 — 1)](25 + 1),

1 (111)

TEj_10x = hXo + hiog(25 + 1) + hp925(25 — 1)
ho~ < _ o 3
- Z[Az+)\gl)(2j —1)] + ha® [j(g + 1)—1}

+ Z[XI+X§1)(2j—1)](2j+1). (112)

4.5.2 C and D modified effective Hamiltonians

Within the same order of approximation as previously the
zeroth-order model of Section 4.3 is supplemented with
the first three terms of equations (105) which gives

~ N [ N
H&ibr - hﬁ(O)Ns(Ns - ]-) + hﬁ@) |:7 <7 + ]-> - 3J,z2:|

+mAD(N, —1)S..J.. (113)

Taking into account that J, = A — 25, (resp. J, = A+
2S5,) for case C (resp. D) we can rewrite Hyp, in a form

similar to those of THY, ~(Eqs. (77), (95)). For C-type
systems we obtain

JrIq’uib'r‘ = MJS(NS + 1) + hﬂ(O)Ns(Ns — 1)

AW N, /N,
22 _ ~(2) (s [ Z1s _aA2_
h —h= (Ns — 1) +hfi [2 < 5 +1) 3A 3}

+hd { %ﬁ(& +P_) + *59%&} : (114)
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with

#50 = <]

=[h + 120 + AN, - 1],
and for D-type ones
_ﬁmbr = ms(Ns + ]-) + hﬁ(O)NS(NS — ]_)

A AW N, [N, —
A (Ne — 1) +hi® {7 <7+1) 3A23}

(1 = i
+h§{§\/7f(P4 +P) +-5§1>APZ'}, (115)
with .

5 = g[ﬂz —12a® + AN, - 1)).
The diagonalization is now performed with unitary trans-
formations U and U’ having the same form than those in
Section 4.3. The eigenvalues (80), (97) become

£ Eime = ho + hde(2) + 1) + B 02;(25 — 1)

A A
h— Fh 27 —1
Fho Fh—-(2-1)
+ Bg@ (5 + 1) — 3(m + 1)? — 3] + ho Q2+ (j, m),

(116)

where 24 (j,m) is obtained from equation (81) with the
substitution

5. = 450 () = 30 £ 127 + 30 (2) - 1)

The eigenstates of * H,;, are obtained from those deter-
mined in Section 4.3 with the appropriate substitutions
for £2.(j,m) and 6.

For the special case m =
become

YE 14 = hho + hos(25 + 1) + hip925(25 — 1)

—1 the energies (87, 99)

— 2P+ A0 @) - 1)

A~
+ A+ 1) = 8] £ 505G +1),  (117)
TEj_1x = lido + hos(25 + 1) + hip92;5(25 — 1)
+ g[f\z + A0 (25 - 1)]
h~
+ AP +1) = 3] £ 505G + 1) (118)

For the uncoupled states (89, 100) equations (90, 101) are
replaced by

B = ho + has (2 + 1) + b2 — 2®)5(25 — 1)

£ o[+ A0 - 1)), (119)
tEji 1 = hio + hos(25 + 1)
+ 0205 — ) (5 - 3))(25 — 1)
A o~ -
+ S+ A0 (27 - DI - 1), (120)
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In spite of these additional terms we observe that, for A-
B as well as for C-D cases, there remains some (Aq, As)
(or (B1, B2)) degenerate pairs. These residual degenera-
cies are lifted if one takes into account, perturbatively or
through a numerical diagonalization, either a purely vi-

brational operator [ 727)]1)(]‘1,,@1,,41) with ¢, # 0 or the
next allowed vibronic tensor involving [ 7ZU]V(j“’£1’ Bk)

(see Eq. (47)); vibrational tensors with Az symmetry and
£, # 0 require usually higher n, values [22].

4.5.3 X modified effective Hamiltonians

In this case the additional terms are those in equa-
tion (113). Thus within the same subspaces (102, 103)
the eigenvalues (104) are replaced by

ESps = hog(2j + 1) + h925(25 — 1)

3 s s 14
+APLG + 1) = £ XD 21 (121)
We will not consider here the introduction of effective
rovibronic operators which allow to refine the previous
vibronic models. This will be presented elsewhere for sym-

metric top molecules for all five types of F, ® e, systems.

5 G’ electronic states in cubic symmetry
5.1 Untransformed Hamiltonian expansion
For a G’ electronic state we have from equation (17) re-

stricting to terms which are at most of degree two in the
coordinates and invariant upon time reversal

Hayir = 1.3 s, (N + %)

2
" Z [EDR0) 5 y(O))(An) (122)
c
where, to simplify the notation, we set:
V(c) _ Z ,tc »Q(C)
+Z AC1C2O) ([ QO 5 ,Q(C)C) ... (123)

s,s’

with C = F or F» (Eq. (7)). Likewise from (18) we obtain

Hm'br = Iezhws (Ns + %)

H[E(O-11128,100[41)(B) o 1 (B))(41)

_"_[E([l*l]l,oAg, [lfl]lFl)(Fg) X V(F2)](A1) (124)
Various forms for the vibronic matrix may be obtained de-
pending partly on the basis used for the electronic states.
We will restrict below to few possibilities chosen for their
practical interest.
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5.1.1 Vibronic matrix using chain (5)

In that case we choose the symmetry adapted basis defined
in [20,32] which takes advantage of the natural subduction

DG/2) | @ to define the orientation of the irrep G’

10[(10)3me)) = [10J10)367a0)), (125)
with 51 1 s
0123 4 (126)

With the results obtained in [20] the vibronic matrix for
(122) reads

ﬁ:&ozs:ms (Nﬁ%) 2\/_(;)1‘/( )4 AV

L B, & )~ (F
+ﬁp3[Pz V(;c2)+py V(yQ)JFPz V(z 2)]a

where p; are 4 by 4 matrices given in terms of Pauli ma-

trices by:
o, 0 ~ (005,
0 -5, ) Pz = 6,0 )
~ 0o ~ (03
p2<6:0 0); py(a:y())a
. (0 —ig,\ ~ (0,0
PB=\iz, o )P~ \ 05 )

This particular form for the vibronic matrix is due to our
choice (125, 126) which differs from that defined in [2,4].
Taking into account that in [4] standard conventions are
used for the su(2) irreps it may be shown that the sym-
metry adapted basis given there is related to ours by:

(127)

)
I

o

Q

2o = (11010} 36'3) + i1 0110/ 56 D))
2o = (11810 56'2) + i1 0110/ 564))
Pu§7) = 1010 56'3) + (1 8)(10) 5G'1)
2o = S L010)5672) + 1 0110) 564

Within this basis the vibronic matrix associated with
Hyipr (122) takes the form

s 9s L = (B | A B
H—Uoghws (Né+§>+2—\/§(cg Vl +C€ V2 )

1 N N
— —[C& V(zFé) + 077 V(yF2) + Cg

v 2) ,
Wi s

(128)

where the C,, matrices are those defined in [4]. This leads
in particular to the relations between parameters of linear
coupling in equation (123) and those used in [4]:
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5.1.2 Vibronic matrix using chain (9)

We first note that with equations (14, 15) and (32) we can
rewrite Hypr (124) as

_ Js
Hvibr - Ie ZMS(NS + 5) +
2
PSRV

where we took into account that within the irreducible
subspace [10] of u(4). we have [20]

1
58+ VP s v

(129)

pa-un -1

1-1]1, [00]O 00]0, [1—-1]1
LAY o (=1L 000) pfoolo, (-1

1 Fla

with a = 2,9y, z. The vibronic matrix for Hyp, (124, 129)
is determined in the symmetry adapted basis (10) with
kets ordered as:

(me,m) (3,3) (=3,3) (5,—3) (=3, —3)
Eo,Eley, 1,1 2,1 1,2 2,3 (130)
G'o G'1 G'2 G'3 G'4

We note that this order differ from the one used in [20]
which was chosen in view of applications to G’ x fo JT
systems in octahedral molecules. With the method and
results of [20] for (124) or directly from (129) with our
conventions (Eq. (A.2)) for su(2) covariant states the vi-
bronic matrix is obtained as

T ~ s 1 ~
Hyipr = Uozhws (Ns + %) -3 (p—
s

(B) | 5 (B)
2 Vo r e Vi )
1 ~
+—=> P VI,
2\/§ = P

(131)

where

5.2 The linear G’ ® e system

The analogy between the E ® e and G’ ® e systems in cu-
bic symmetry has been mentioned in several places [4,15]
but to our knowledge not precisely established. We will
show how the use of chains (8) or (9) to perform the sym-
metry adaptation of both electronic states and operators
allows to recover this result in a straightforward manner
together with a complete determination of a symmetry
adapted vibronic basis. This already appears if one com-
pares equation (35) with the first line in equation (131)
together with the expressions for the matrices p.
With equation (124) we have the linear Hamiltonian

Hjrp = Iehws(Ns + 1)

+ {s}tE [E([171]1,2E,[00]0A1)(E) « SQ(E)](Al),
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or in terms of pseudo-spin operators (14) and with equa-
tions (30, 32)

Hyrp/h = Tws(Ns + 1)+ . DPH (S, ¢+ S_q'7),
that is of the form (37) in a type (iii) case as appropriate
for an ¥ ® e system in spherical top molecules but with
pseudo-spin operators acting in the four dimensional space
defined in (10). The property

[HJTL7jZ] = [HJTL; sgz + Sz] = 07

together with the time reversal invariance of Hjpry and

the property of the basis states

e, [10]5 mL)) =

(1)~ 16], [10]5

K|[10], [10]2

— e, [10]3 =),

imply that the energies only depend on the eigenvalues |u|
of j, and a fourfold degeneracy of the eigenstates. In the
following we will also use the fact that Hjp; commutes
with the third component X', of the pseudo-spin linked to
the su(2)x algebra (15) of which the basis states (10) are
eigenstates. The states (41, 42) are replaced by

HMHmnmmlgmwwﬁéw—;ﬁ
) (ro1E — 2, om0l A2y — uif)
o1k - Lo dmpio - A5 2y — o
00, 0012 2, o m ol — £ 2 = o)

(132)
where the upper (£) indices refer to the eigenvalues m, =
+1/2 of —X,. With these phase choices it is easily checked
that the matrix elements of H 7,

< ]+ At |HJTL|¢JM+>

(o ]__M_;,_|HJTL|7/JJH+> (133)

are those given in the right member of equations (43, 44)
(with & — p). From equations (10, 130, 132) and Table 1
we obtain the symmetry of the degenerate eigenstates of
Hjrr:

|1 Lew
1
3p+§E X Ell :GI
3p+ 2(A1 + Ay) x E'l = E{ + E}
3p + gE xE'1=0".

With the results in equations (45, 46) for G = O, Ty
and the properties (11, C.7, C.8) a symmetry adapted
vibronic basis is easily obtained and summarized below.
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_ 1
e u=3p+s
+  _ i (+) (+) v (+)
i h Rl e
QJ;LGT& = 71}@ Jp— éj;tG/4 = véj,uﬂr
op=3p+3
+) v (+) (+)
@j,u‘E’f - +1(¢];t+ (71)2j@];¢ )/\/§
L el —
+)  _ v (+) (+)
e o ”wz% =
- _ 2
qjyﬂEéi - @J;Hr ( 1) jéju* /\/5
opn=3p+3
+ (+) (+)  _ i—vg(t)
i %?“T st T
@JMG/B = ﬂugziJIH‘ ’ @j,uG’4 = 7v@]l¢_

with @) | @ = ¢ or @ = 1) as defined in equation (132).
We note that the preceding states satisfy upon time re-
versal

+ G
Kégué‘a = ( )C é( 7

jnC—ar
with
C G’ E!
g 123 4 1 2
-¢ 43 21 21
(-D¢“711-1-1 1 -1

5.3 G’ ® e dynamical JT systems in spherical tops

We first recall that within our approach an arbitrary effec-
tive vibronic operator for an F®e case in cubic symmetry
may be written as

[E(lveece) X [ml 7;77'2]]}(‘7.1)7@1) Cu)](cﬂv), (134)
with C., = Ay, As or E and its matrix elements computed
in the coupled basis

n O] 1E, [00)j¢Ty; Thyoen)), (135)

associated with chain (49) (see Appendix C). Also in Oy
only e, modes are active.

For a G’ ® e case we have mainly two possibilities ac-
cording as chain (5) or (9) is used. In the first case we
have the vibronic chain

su(d)e ® u(2)y D sp(4)e ® su*@)@
o v D sial(?)e @ su*j(2)v o> 0° (136)
5 i Teoe
with vibronic operators written as
[EXiA2)(KeCe) o [ma —maly)(juby Cu)](Cev) (137)
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Their matrix elements can be computed in the vibronic
basis

. 3
|[10]<10>§G’, [00)JlLy; Tevoer)) (Iew =G x I3,), (138)
associated with (136). In the second case we have
su(d)e & u(2)y D (su™(2)s & su*(2)y) & su(2)s
[10]  [v0] 3 j 3
S g (139)
AevOen

with Ae, = (EX Iy)Iey x E7. The vibronic operators (137)
are replaced by

[[E([/\lm]kl74106,[&#2]’9209

o [ ,;m]v(ju,zu CU;AI)](CEU,MCQ)](C), (140)

and this time the associated symmetry adapted basis is

[[10], [10] 1E, [10]§E1;[UO]jéﬂ,;Fw,Ei;Aevoev>>.

(141)
Other coupling schemes could be considered. Although
both formalisms are mathematically equivalent we will
see that, as before, the second possibility is more suit-
able to establish the connection between G’ ® e and E® e
problems. Matrix elements for operators (140) within ba-
sis (141) are given in Appendix C.

We notice that whenever C' is of species A1, Ay or FE
we can only have ks = 0, C/, = A; in (140). This comes
from the fact that C,, can only be Ay, A5 or E and from
the symmetries (13) of the electronic operators. In such
cases the operators (140) take the form

2

[E(P\l#l]klvflcev[OO]OAl) x [m1=ma]y)(ju,lo Cv;Al)](CeuyAl) =

[E(P\lul]kl,51067[00]0141) % [Sml —m2]v(jm€v Cu;Al)](Cev)7

where we used the property

Oew (C)
(Cep A1) @ = 0Ce0,0 0euso,

€’U

F

This means that, since the electronic operators
E([)\l;tl]k‘l,elce,[OO]OAl)

are proportional to the pseudo-spin components S, S,
associated with the su*(2)g algebra (14), to all orders in
the effective Hamiltonian expansions both E®e and G’ ®e
problems are formally identical. We underline that this is
true if no triply degenerate mode is involved and as far as
rovibronic interactions are neglected. This last point will
be further illustrated in the following.

In particular the expansion equivalent to that in equa-
tion (47) writes (kC = 0A43,2FE)
jvyevAl(Al)I [n

ﬁvib'r‘ = Z {éf

v 72‘”]]}(]'”’[” Al)

{ns}{n} €
{nv jvﬁz }
7o 0 C(C) ([1—1]1,kC,[00]0A1)
LD DR e {E
{k,C}

[t Tl o c;An} ) }
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When expressed in terms of the pseudo-spin electronic op-
erators S4, S, and with the same assumptions than in
Section 4 we are led to a A-type case (53) associated with
the corresponding E' ® e problem in cubic symmetry:

e
THY /h= 0u(Ng + 1)+ A8, +55 5 (ST +S_Jy).

(142)
Thus the eigenvalues are identical to those *FEj,+ in

equations (59, 60) with this time a degeneracy of four

in general. The unsymmetrized eigenstates +W(z)(i)

obtained from those in equations (62, 63) with the substl—
tution

£))

for the electronic states which can also be expressed as
n (10). As before the notation (£) for the upper indices
underline that they are also eigenstates of the pseudo-spin
operator X, .

Special cases

e We have four uncoupled states

e, [10] ml))

— [m0)) = (18] 0] me. 10]

[+ EDI 0l 7)), = ENIO0l =),
associated with the energy T F; in equation (65);
e for m = —1/2 we have two doubly degenerate eigenstates

with eigenvalues *E;_; /o4 as given by (69). Equation (70)
for the corresponding symmetry adapted eigenstates is re-
placed by:

|[10H10]%1Ea [10] El,[UO]j,Q+,E11>

:if’“[l+ +>>|[v0]J —1/2)) + |- )l
L0 0121E, [10]L B, [v0)j; 21, E/2))
=i_”+1[l+ ~DIv0]71/2))]/v2
[10][10]31E, [10]5E7, [v0]j; £2—, E51))
= 2[4, H)w 0l = 1/2)) — |+ N 0li1/2))]/v2
[10][10]531E, [10]2EY, [v0]j; £2—, E42))

= i"[]+, N 0lj —1/2)) - |-, -NI[v 0] 1/2))]/V2.
The expressions of the symmetry adapted vibronic eigen-

states for other £ = 2|m| values are given in Section D.2
of Appendix D together with those of the F ® e system.

)

>[v0]j1/2>>]/\/§
>>|[v0]J —1/2) + |-, |

2)

5.4 Additional terms in the effective Hamiltonian
expansion

As discussed in Section 4.5 higher order terms can be in-
cluded and still lead to a solvable effective model. The
formal equivalence of the G’ ® e and E ® e systems dis-
cussed before imply that we can also add *Hizbr (106), in
which {Si,S.} are replaced by the pseudo-spin compo-
nents {S+,S.} (14), to the previous zeroth-order model
(142) since we have a A-type case. The correspond-
ing eigenvalues are T Ej,,+ as determined through equa-
tions (107-112).

As mentioned previously we may expect that this
equivalence disappears when rovibronic interactions are
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taken into account. This is confirmed when one looks for
the possible rovibronic interaction operators of lowest de-
gree in rotational variables which may appear in both
Hamiltonian expansions.

e For an F ® e case these are at least of degree two in the
50(3)r generators R'(Y) [28,29):

[E(1L2E) 5 R2(2:E)](A1) - [E(1.042) ¢ R3(3,42)) (A1) ... (143)
and unfortunately the introduction of any of them breaks
the exact solvability.

e But for a G'®e system appears a pseudo—spin rotation in-

teraction operator which commutes with +H Ot +H L
([00]0,[1—1]1) 1(1)1(0) _
[E000.0-111) R I, =
— [E0010.041,1-111F) o (L) (A1) — _1e.F

V3

where the coupling in the electronic operator involves the
su(2)x label only. Thus the usual su(2)x & su(2)gr D
su(2)w algebra associated with the standard theory of

— — —
angular momentum addition R + X' = W can be intro-
duced. This leads first to two possible bases for the space
of rovibronic states:

110], [10] gme., (101, YWa)) o 0]m) =

5> e 5 ) o gm.. it

x |JM, JK))|[v0]ym)), (144)

within an su(2) D so(2) orientation; |JM, JK)) are the
usual symmetric top rotational covariant states [25,30,31]
which satisfy upon time reversal

K|JM,JK)) = (-1)M=K|J - M, J - K)).

Alternatively we may use as rovibronic basis

110}, [10] e, (10]5, 1)Wp) o Ljm)) =
>r a7 0y, om0l 1)
< |IM, I5) o

0]jm)) (145

with su(2) D G (G = O,T; or Oy) symmetry adapted
bases [17,32] for the pseudo-spin X and the rotational
operators. In equation (145) p = n,C,d, and the F
symbols are symmetry adapted Clebsch-Gordan coeffi-
cients [28,33,34]. The expressions of both basis states
(144, 145) show that the procedure used in Sections 4.2,
4.5.1 applies to the diagonalization of

7 1 32 . Py
Hoyipr = +Hmbr + Hmbr + hBR* + hAs- R - X,
the eigenvalues of which are given by (W = J £ %)
Ejms,gw =" Ejmt + h3J(J + 1)

+hizr% WW+1)—JJ+1)—=|.  (146)



486

The associated unsymmetrized eigenstates +LT/(Z)(WQ) or

+W;Z(iwp ) of Hrmbr are first obtained from those in equa-
tions (62,63) with the substitutions

) [, Wa)) = |10], [10]L me, (1012, )7 g)),
|£)) — & Wh) =[10], [10]2 Me, ([10]%7J)Wﬁ>>a
and the values of cosf(j,m), sinf(j,m) as given in (64)

with appropriate values for §2(j,m) and §, according to
the terms retained in the vibronic part. Symmetrized rovi-
bronic eigenstates are determined through a two steps
procedure. Firstly with the results in Section D.1 of
Appendix D for an F ® e system we obtain states

. 1 1 . _
(001, 101, (11015 ) Wi o0 2. o)
given by equations (D.2-D.5) in which the substitution
T
is made. Secondly a standard coupling in O

|[10], [1 0]%, ([1 O]%,J) Wn,.Cy; [00]5; 24, Aeper)) =

O Oev (Aev)
2Pl

x 16, [10]3, ([10]3,

leads to symmetrized rovibronic eigenstates associated
with the eigenvalues Ej,+ 7w (146).

J)va ['U 0].77 Qi7 Fe'ua'ev»;

6 Correlations with previous studies

As explained below correlations with previous studies are
not straightforward and must be made with some caution.
Let us first recall that in a general way a formal effective
Hamiltonian (for instance for a given vibronic polyad) is
linked to an untransformed Hamiltonian through a usually
unknown unitary transformation. In addition our expan-
sions in normal order form for the vibrational operators
imply that all equivalent contributions coming from differ-
ent powers in normal coordinates are included. Also, dif-
ferent physical effects which may contribute to the same
effective operator are automatically taken into account. A
similar situation arises in rovibrational effective Hamilto-
nians [29]. This is illustrated, for instance, by some X-type
systems, such as F1 ®eg in Dgqg symmetry, which show that
the effective operator ﬁS\ZSZJZ associated with a pseudo-
spin vibration interaction necessarily includes a contribu-
tion coming from the rotational terms [6,35]. Also Table 2
and the results in Section 4 show that, within the consid-
ered orders of approximation, we may have similar formal
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effective Hamiltonians whether or not there exists a JT ac-
tive coordinate. The effective models in Sections 4.2-4.5
and 5.3, 5.4, for which exact analytical expressions for the
energies and eigenstates have been obtained, are thus dif-
ficult to relate to existing studies of similar systems. The
latter are often the result of a numerical diagonalization
of Hamiltonian matrices truncated to some v,,., value
and associated with untransformed Hamiltonians such as
those presented in Section 3. The few analytical expres-
sions for the energies appearing in the literature are re-
lated to A and B-type cases for E' ® e systems and usu-
ally arise from a second order perturbation calculation
of the linear and (or) quadratic JT terms. We will thus
mainly consider these cases with the zeroth-order mod-
els described by H)., = for limiting values of the effective
parameters.

vzbr

We consider first, for E, ® e, systems admitting an
active coordinate, the first order expansions in equations
(53, 54, 55, 56, 57) with A, = 01in (53, 54) and 6 = 0 in (55,
56). In all cases, with these assumptions, the eigenvalues
reduce to:

EQ = h)o + hav, (v—i—l)ih)\ ¢,

vibr

(147)

all levels being doubly degenerate. This means that we
may associate these restricted models with standard ones
in which the linear JT term only is included to second or-
der in perturbation theory [4,13,36] (see also Sect. 3.2.2).
This leads to

~ V2
A ~ —2hDw = ——]23, Ws R wg,

w
E
As V3

h—" ~ F2hDw = F—£ = Fhwk? (148)
4 wg

where the upper (lower) sign corresponds to ' = 2r

(r' =n—2r(2n —2r)); D, Vg and k are the linear cou-
pling constants used in [36], [4] and [11] respectively. We
note that contributions to the vibronic energies of the lin-
ear JT term, up to sixth order in perturbation theory
have recently been reported [37] for molecules in Cj, or
D3y, symmetry; some second order contributions from the
quadratic JT effect were also calculated. Within our ap-
proach these results may be modeled by an Hamiltonian
with eight parameters, involving only terms with

[no =10l (Gu,Lo=0 A1)

K Ju even n, < 2

[y —ZU]V(julu:OAz) jp odd n, < 3

(149)

in equation (47). The corresponding eigenvalues are easily
obtained since there is no vibrational factors with ¢, # 0
and no tensor interaction term with E species involved.
The eigenbasis is simply |£)|[v 0]jm)) and the eigenvalues
are a polynomial in the quantum numbers j (or v) and
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+¢ = A which extends (147) (see also (121)):

Eyae = hho + hivg(v + 1)
+ 1 Dv(w —1) + BapP[v(v + 2) — 362

O A @ )+ 3O - 1) - 2)

FAB[502 - 3u(v +2) + 4]/16} Al (150)
In addition to the reasons already given at the beginning
of this section, the difference between the number of pa-
rameters (eight instead of three) is partly due to contribu-
tions from cubic and quartic terms in the potential energy
neglected in [37]. Although we could relate both sets of
parameters we doubt that this would be meaningful. We
simply note that including the fourth order contribution
from the linear JT coupling changes (148) for these E® e
systems to:

Ao ~ —2hDw, @, ~ wp(l+2D?),

h% ~ hw(2D — 8D?).

(151)
As an aside it may be noted that operators in (149) and
similar ones of higher orders which lead to an expansion
of Hyipr of the form

ﬁvibr = Z{f(Ns)Jsz + g(Ns)Sz JZQIH_I})
k

where f(N,) and g(Ny) are polynomials in the oscillator
number operator Ng will never raise the degeneracy of
A1, Az (or By, By) sub-levels for A (resp. B) type cases.

Now if we make the assumption that for A and B-type
cases we have A\, = 0 in the low order expansions (53,
54), the eigenvalues in equations (59, 60) reduce to those
obtained from a second order perturbation calculation for
the Renner effect [38-41]:

YEiks /b= do+@s(v + 1)+ 2 [(v 4+ 1)% — K?)1/2

NP

TEg/h=dot0s(v+ 1)i%[(v +1)2 - K32 (152)
where we introduced the quantum numbers K (resp. K)
for A-type (resp. B-type) cases associated with the opera-
tors 24 (resp. 24). A similar situation was encountered in
(I) and it is known that a zero value of the linear vibronic
coupling constant reduces the quadratic £ ® e system to
that of the Renner effect [2,4]. Relating (152) with known

expressions [39] gives one additional contribution to the
effective parameter @s and a rough estimate for A,:

p2
- 8h2w?
p Wi

havs ~ hwg (1 ) Ble ~ £2p

(153)
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where p, g and Wg are the parameters of quadratic cou-
pling used respectively in [39], [11] and [4]. Although ap-
proximate it can be checked that these relations taken
with TE; (65) for j = 0 and TE;_y/o4 for j = 1/2
(69) gives a crossing of the lowest E and A levels for
g = 0.899 which is close to the value ¢ = 0.918 ob-
tained in [11] through a numerical diagonalization of a
truncated Hamiltonian matrix. The lowest level being Aq
(resp. Ag) for A, < 0 (resp. A, > 0) in agreement with [41].
For a G’ ® e system in cubic symmetry the substitution
Ay, Ay — Ef, E% must be made and for a B-type case TF
is replaced by ~— F and species A1, As by By, By ones.

When combined, equations (148) (or (151)) and (153)
give a rough estimate of our effective parameters in the
zeroth-order models (53, 54) for A-B cases and for sys-
tems admitting an active coordinate only. We doubt that
these correlations apply for arbitrary values of the effec-
tive parameters in the energy expressions determined by
equations (59) and (60). Still more work should be done to
give a precise physical meaning to those appearing in the
extended models (Egs. (107-112)) and for cases when the
e,» mode is not associated with an active coordinate. The
same apply to C-D and X models solved in Sections 4.3,
4.4 and their modified forms in Sections 4.5.2 and 4.5.3.

7 Conclusion

Assuming in first approximation the existence of electronic
A, and vibrational A, invariance algebras allows to build
complete sets of electronic and vibrational operators, their
matrix elements being calculated within appropriate sym-
metry adapted bases. One may next build effective vi-
bronic Hamiltonians the form of which depends upon ad-
ditional physical assumptions.

In this series of two papers this approach has been
applied to JT dynamical systems of the E ® e type for ar-
bitrary molecular point symmetry group G and to G’ ® e
systems in cubic symmetry. Our main concern has been
in the study of exactly solvable models which, besides the
common invariants of the invariance algebras, include vi-
bronic interaction operators the characteristics of which
are mainly determined, for a given molecular point group,
by the symmetry of the vibrational mode. We thus ob-
tained new analytical expressions for the energies and
corresponding eigenstates for models including several vi-
bronic interaction parameters. Even the simplest of these
models account for a possible ground-state crossover for
some of these systems.

In a future work we will show that for symmetric top
molecules one may also introduce some rovibronic inter-
action operators while keeping the exact solvability. We
also look at further extensions to other I', ® 7, systems as
well as to situations in which spin-orbit interactions are
present.
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Table A.1. Conventions for groups in G.
G X Y T P
1.2 dd
Dy, c;  C3(0x) 2 M9
.5 —1 neven
1.2t dd
Cono C: o,(02) 2 "% am
1...5 -1 neven
D,
! S5, Ch(Ox) l..n—1 x
(n even)
o Csa1,1y  CF 1 Z
Ty Csa,1,1) 873 1 %’“

Appendix A: Summary of previous results
A.1 Classification of point groups

The various point groups admitting integer E-type irrep
are separated into three categories:

— groups in Gy are finite subgroups of O(3) of rank two.
We have thus the groups D,,, Cyyy, Dpg (n even), O and
Ty with generators, denoted X and Y, characterized by
an angle ;

— groups in Gy are direct product groups of an ele-
ment in Gy with Cs or Cy thus introducing a third
generator Z whose matrix representative is always of

the form:
(Erg) — L0},
D (Z)_i(o 1),

— groups in G771y are Coeyy and Doop, and not considered
in this paper.

(A1)

The chosen X, Y, Z elements, the appropriate angle v,
the possible r and « values are given, for groups in G r)
and G(ry), in Tables A.1 and A.2.

A.2 Conventions for generic su(2) states and operators

For an arbitrary su(2) algebra with generators {J,, J+}
satisfying [J,, J+] = £J4, [J4+,J-] = 2J, , our conven-
tions for su(2) D so(2) covariant states read:

Je [{vyim)) = =[G £m)(G Fm+ V]2 [{y}im F 1)).

Likewise covariant components of irreducible tensor oper-
ators, with rank k, {"}T(f) satisfy:

(o, 9T) = —g 19T
(e, (ITP) = ~[(k £ q)(k F g+ D]/2 T
(A.3)
In equations (A.2, A.3) the indices {7} and {x} refer to
all additional labels needed to fully specify states and op-
erators, including those which may appear when higher
algebras are introduced.
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Table A.2. Conventions for groups in G(;py.

G Z a  sign (Eq. (A.1))

Dnh - Dn X Cs . ! +
(n odd) h " -
Dyn = Dy x C I g +
(n even) u -
Drg = Dn x C; 7 g +
(n odd) U -
On=0xC; r Y +

A.3 u(2) algebras for E, ® e,, systems

In a previous work [22] we showed that a full treatment
of doubly degenerate vibrational modes, as well as orbital
doublets, can be performed starting from a Schwinger re-
alization of an u(2) algebra. This comes from the fact that
symmetrized powers E®" of E species in common point
groups span an irrep [n0] of u(2) with n = 2j.

Within the standard u(2); D su(2); D so(2); (i = e,v)
chains the basis states are thus labeled |[n0]jm;)) with
n =1, j = 1/2 for an E, electronic state and we set
n = v for the vibrational states associated with an e,
mode. Symmetry adapted states

[nO]G my

[n0j t:ilios)) = > gy [0 01im)),

mi

have been built in three orientations of which only two are
used in this paper. The corresponding algebraic chains are
denoted u(2); D su*(2); D G where the notation su*(2) is
used to emphasize that we deal with a non canonical sym-
metry adaptation. In orientation I the matrices D¥)(R)
(R € G) for E-type irreps are real with, for the generators
X and Y:

DE)(X) = ( cos sinr¢>7 DE(y) = <1 0>'

—sinry cosry 0-1
In orientation II they are complex with:

e 0

By (0 —1
o ) D= (43

and the notation 7;, instead of o;, is used for the kets and
tensors components.

00 -

General tensor operators ™1 —m217 () where [my —
mo] is an u(2) label, have been built! and their matrix
elements computed in the previously described bases. We
recall below the main results needed in this paper.

! In Appendix B of [22] in Dgq for the Es irrep the u(f)
factors must be replaced by their conjugate for E2 and FE4
symmetries.
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Table A.3. E, C [ET]2 for groups in G|j).

Ey Dopia Dy, Dspq Case
C2p+1v Cva
T4, 0O
Es- r<Z r<EZlpodd r<p (i)
r<?Z 2 p even
Epn_ar r>2 r>21Lpodd (iii)
r>% p even
Fon_on r>p (lll)

A.3.1 u(2)e for E, electronic states

The standard components of the electronic operators are:

B=1g® = (V) + No)/v2, BUEQ = —is.,

=i5_/v2, WUEW = _is, /2

where the notation S,, S+ is used for the pseudo-spin
electronic operators spanning the su(2). algebra; Ny +
Ny is the u(2). linear invariant. Within the w(2), D
su(2)e D so(2). orientation their matrix representatives
are given by:

L-1p (A.4)

n-upm s n-upm _ s
1 \/5 +> -1 \/Q
Ul %U [1 1] §(0) LQ 5o (A5)

where 6o (o = z,y,2), 6+ = (65 £ i6,)/2 are the usual
Pauli matrices and &g is the two dimensional identity ma-
trix.

o The u(2). D su*(2)e D G chain with orientation I

For a given E,. electronic state the possible Ej irrep ap-
pearing in the symmetrized product [E, x E,] are summa-
rized in Table A.3 for groups in G(7y. Setting n = iu(2) = 1
(resp. n = —1) for a (ii) (resp. (iil)) case, the symmetry
adapted generators are then given by

_ 1 _ 1
5 HEéA)Q = =5, . HEéE)kl = Sz,
_ 1
It HEéE)kz = —nSy, (A.6)

and their matrix representatives, within the symmetry
adapted electronic basis |[10]3 E, o)) are:

a1 1, _ 1) n .
s 1]E£13)k1 = ) Oz, . I]E(Ek2 5
_ 1 1,
WUER, = 56y (A7)

o The u(2)e D su*(2)e D G chain with orientation II

In a general way the change from orientation I to that
called II for E-type species is performed through the uni-
tary transformation

E E E
T(® _ (T< ) 1 iT®),

Sl

1 .
Ty = ——= (T —iTy)), (A.8)
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where the quantities denoted T" may be tensor operators
or states. As a result orientation II is characterized by the
fact that, for the electronic states, the symmetrized basis
is identical to the standard one’s:

[10)3 B, ) = [[10]5m))

The symmetry adapted electronic operators are then:

Case (ii) Case (iii)
1] (1) 1) (1
. I]ESAQ =-S5, h-uE éA)Q = -5,
—up) _ 0 —p) 0
" I]EQEkl ﬁ S-, - 2B,1 E St
e 8 B
BBy s =——=5+ FTUER ;=- — 9 (A9)

V2

and their associated matrix representation:

Case (ii) Case (iii)
_uam 1 g L
. 1]E 0A; — 5 O—Zv‘ . 1]E0A2 - 5 O'Za.
_ 1 [ _ (1 [N
[ 1]EQE/1 ,%JJF’ [ 1]E2E,I ,Egﬂ
O R _1 A i,
. 1]E2E,,/i =57 . 1]E2E 2= 50

A.3.2 u(2), for e, vibrational modes

For a given s vibrational mode with symmetry E,, in G
the associated operators are written:

[m1 *72742]1)%1;) or [m1 77?2]]/(5?}6?1,0@ = [m1 7T2]V(jvv£zcv)’
according as one works within chain u(2), D su(2), D
50(2), or u(2), D su*(2), D G with respective bases
[[v0]jm)) or |[v0]j £Iyoy)).

In particular for the su(2), generators we keep the no-
tation {J,, J+} and the corresponding symmetry adapted
generators in orientation I are given by:

= *\/51]2;
[lfl]V(l) — \/§Jx7

E 1

[171]V(1)

YD L = i3 (2),
(A.ll)

where the symmetry FEj is also obtained from Table A.3
in which the substitutions r — r’, k — k' are made and
w'(2) = —i (resp. ¢/ (2) = i) for an (ii) (resp. (iil)) case.
Also we note that J, = —% sf, where ¢£, is the doubly de-
generate oscillator angular momentum. Other vibrational
tensors used in this work are specified where they appear.

Appendix B: Direct products analysis

The analysis of direct products Ex, X Ej, can be made in
a general manner with the results in [21,22]. This is useful
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for instance for the determination of active coordinates in
E-type electronic states as well as to find possible terms
in the untransformed vibronic Hamiltonian. The results
are detailed below following our classification (Sect. A.1)
for molecular point symmetry groups admitting integer
E-type irreps.

B.1 Groups in G()
B.1.1 Groups Dap+1, Coptiv

These groups have irreps Ey with k =1, ---p and we have

(n=2p+1):
.kl #kg

Ei, X By = Ejgy—ky| + By 44 ki 4k <p

=Bk ko) + By +ks) PH1 < ki+k2 <2p
[ ] kl = k2

B, x B, = A1 + Ay + Eoy k
:Al +A2+En—2k

We note the special case of D3 =~ (C3, which admits only
one type E irrep with E x E= A1+ Ay + E.

B.1.2 Groups in Dap, Copy

These groups have irreps Ey with k=1,---p — 1 and we

have (n = 2p):
o ki #kyand ki +ka #n/2=0p
Ey, X Egy = Ejjy—py) + By 1k
for k1 + ko <p—1 and
Ey, X Eyy = Ejpy iy + En—(ky+k2)

forp+1<ky+ky<2p—2.
e Special case k1 # ko and k1 + ko =n/2=p

Ekl X Ek2 =B+ By + E\k17k2|

e k1 = ko and p odd

Epyx By =A1 4+ Ay + By, E<(p-1)/2
=A1+A+E,_9 (+1)/2<k<

e k1 = ko and p even
Ey X E, = A1+ Ay + Eg k<p/2
=A +A+Bi1+By k=p/2

=A1+As+ E,_o p/2<k§p71.

We have the special case of Dy ~ C4, which admits only
one type E irrep with E X E = A; + Ay + By + Bs.
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B.1.3 Groups Dng = D2pd

These groups have irreps Ey, with k=1,---2p—1 and we

have (n = 2p):
o ky #koand ki + ko #En=2p
Ey, X Egy = Ejgy—ky| + Eky ks
for k1 + ko <n—1 and
Bk, X By = Ejgy —ko| + E2n— (k1 +42)

forn+1<ki+ky<2n-—2.
e Special case k1 # ko and k1 + ko =n =2p

Ek1 X Ek2 =B; + By + E“ﬁ,kz‘

.klikg
By, x E, = A1 + Ay + Eq, k<p
=A+A+B1+By k=p
=A1+ A+ Eyor p<k<2p-1

We have the special case of Dyy which admits only one
type E irrep with E x E = Ay + As + By + Bo.

B.1.4 Cubic groups O, T4

We have only one E irrep with E x E = A1 + A+ F as
in D3 =~ (Cs,.

B.2 Groups in G

® Dopi1h = Dopy1 X Cs
Ekla X Ek2ﬁ = ZCW
i

with C; as given in Section B.1.1 and a x § = v , the
indices «, 8 being of type ' or "
o D2ph = Dgp X Cz

Ekla X Ek23 = Zc’i’Y

with C; as given in Section B.1.2 and a x § = v , the
indices «, § being of type g or u.
o D2p+1d = D2p+1 x C;

Ekjo X Eryp =Y Ciy

with C; as given in Section B.1.1 and a x § = v , the
indices «, (8 being of type g or u.
L] Oh =0 x Ci

E, XE[j :A17+A2’Y+E’Y

a X 3 =+, the indices «, (3 being of type g or u.
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B.3 Groups in G(jj)

° COOW
Eyy X Exy = Ejjy ko) + Eryvky k1 # k2
= A; + Ay + By, ki=ko =k
=Xt + X7 + Ey
L4 Dooh
Eyio X Bryp = = Ejpy—ko|y + Eitha)y - K1 7 k2
= A1y + Aoy + Eopy ki=ke =k

= E;rﬁ’E; *|‘E'2k7

a x =+, the indices o, 3 being of type g or u.
In all cases we have for products involving one dimen-
sional irreps

A,L' X E.,- = E.,- or sz X E”'ﬁ = E’“’Y
and when n is even
Bi X ET = ngr or Bia X ETQ = E(%—T)’y

and B; x B, = E,,_, for D,4 (n even) groups.

Appendix C: Matrix elements

We give below matrix elements for an arbitrary vibronic
operator which may appear in an effective rovibronic
Hamiltonian or in transition moments for an E, ® e, JT
system. We set for the coupled vibronic basis states

1
|g7vibr> = |[]- 0]§1ET, [U 0]]£Fv, Fevaev>>a

and we use the simplified notation
O(Cev) — [E(Ce) X [ml _:12]V(jvaev Cv)](cev)7
for the vibronic operators. The vibrational operators as-

sociated with the doubly degenerate e, mode are those
defined in [22]. The Wigner-Eckart theorem leads to

, o 1 Hev Oev Fév *
Wing | OG5 Waivr) = (Tl [Cea) B F (7 1) ( og@)
Ce Er ET 1 1
<3 ¢ it (0 EEC o
Cow Ty IV, 2 ’

([ o' Ly||rm ey et O oljer,).  (C.1)

This expression can be used in any of the orientations de-
fined in [22], the Clebsch-Gordan coefficients being chosen
accordingly.

Special cases

o F(C) = IéAl) that is for purely vibrational operators
(C.1) reduces to

C
< LibT"O(eeevu)lwyib,,,) = 6CU,C€U(_1)Cv+F€U+F1’y

1, 0y 0ew (Ll)x I, I E,
< g fon U (e 8 6

(W O Ll YU SO poljer) . (C.2)
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e Vibronic scalar operators as considered in this paper are
characterized by Ce, = A; hence C,, = C, which gives

(W OUNDY = 81 1,01 5., [Ce] " F(—1)TerHTvtCe

ev 10-611

Fé E’l“ Fev l (Ce) l
ST (nogis e s,

x([o' 0] Ly |t~y U e €O p0]jer,). (C.3)
For those used in this work we have in addition m; =
mo = n, which leads to the additional v = v, 7' = j se-
lection rules. Reduced matrix elements for the vibrational
operators may be obtained as described in [22]. Those
for the electronic operators are given below for cases (ii)

(p = +1) and (iii) (n = —1)

([LO]21E, || -UEM04A)|[10]21E,) = i/V2 Vr
([LO]31E, ||t ~HEM2ED||[10]31E,) = 1.

e Vibronic matrix elements for £ ® e and G’ ® e systems
in cubic molecules.

For an E ® e case in cubic symmetry the matrix el-
ements are those given by the preceding equations with
E, = E and n = —1. For vibronic operators associated
with a G’ ® e case we only consider below those built with
the algebraic chain (9) for the electronic operators. For
the coupled vibronic basis we set

. 1 1
|[10]a [10]§1E7 [10] 5E1;[’U O]jgpv;Feva Ei; Aev>\ev>> =

|{76}’E7 Ei;[’u O]][FU;Fevv Ei;Ae’U)\eU>> = |inbr> (C4)

with the implied (E x I,) I, and (I, X Ef)Aey, coupling
schemes. The vibronic operators are built following the
same coupling scheme:

0 — [E([Al,ul]klvelce s M2p2]k2CL)

X [Sml *m2]v(jvfzv Cv?Al)](Cevfk?Cé)(C).

The Wigner-Eckart theorem for double tensors [31,42]
leads then to

1 Octy Aew A'ev *
W, 10 W) = ([A][CNFS oF ()

ev 5 (C Aew) AL,
Cey Cp C C. E E
x([FéU][FCU][CCU])% Feﬂ Ei Aev Cv Fv Fé

Fév Ei A:f:‘v Cev Feﬂ Fév

B8
x ({7} B, Ef||[EPamlkniCe, DanzlkaCo | 1y A B, BY)
x ([ ]3¢ Iy]|ma =malye-te Co) [y 0]5LT,), (C.5)

where ( is a multiplicity index for the product C X A,.
We note two special cases. Firstly when C! = A;, hence
C = C,,, as discussed in Section 5.3 for which we have
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for (C.5):

( mbrlO |szbr> = (_1)C€U+E1+A;’U+Fe’v

1
V2

L 961) )\e'u Aév *
X ([Aev] [Cev] [Fév] [FCU] *F (Cev Aew) ( )\év)
I, Ty Cey Ce O E;
> Aev g C, I, Fv
ev ‘ley 1 Ce'u I, Fé'u

X ({7e} B, By|| B@umlintCe 00040 (0 y B, BY)

([ o' || iy et I o]jer,).  (C.6)
Although this expression hides somewhat the equivalence
of both systems (Eq. (C.1) with E, = E) it can be recov-

ered if one notes that in fact the basis (C.4) we used and
that defined by

[Puibr) = |[10], [10] [10] o3[ 0l el euOen))

are identical due to the properties (11) and the values

o Aev

F (Al l‘oj—f) ()‘e'u) = 5/151,,13'1 5Aev76é7 (C?)
—/

F O¢ (ACU) = 5/161”]3& 5/\“}75@7 (08)

(A2 Ei) Aew

of the Clebsch-Gordan coefficients of O° [20,32]. Secondly
for scalar vibronic operators as considered in this paper
C = Cey, = Ay equations (C.5, C.6) give

A Ors, 1 [Ce] 75

ev?

< vibr |O |g7vzbr> = 5/1/61 AewONL

1 (Il E I,

B E T Ce

X({ye} 2, By|| pPumlin € 00040 {9 ) B, BY)
(W' 0] ¢ || =yt S oljer,). (C.9)

% (_1)Ce+Fev+Fv

The reduced matrix elements of electronic operators are
given by:
k101C. ;5 koC! r.m.e

1,045 ; 04,

1,2E ;04 f\/i
0,04; ;1F; V3
1,04, ;1F, —V3
1,2E ;1F, —iV6

Appendix D: Symmetrlzed vibronic
eigenstates for H‘,.br

D.1 C3va D3a D3ha D3d$ 0’ Tda Oy

For these groups we have only one ' ® e or E, X eg sys-
tem of A-type. Table 3 is used with r = 1 together with
the matrices for the E type irreps in orientation II. The
symmetry adapted eigenstates denoted

|[1O] 1E [UO]],Q:I:; evgey>>
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are listed below in terms of those defined in equa-
tions (62—64) taking into account the relation ¢ = 2|m|.
All phases have been chosen so that under time reversal

IC|[10] 1E; [v0]7; 24, TeyOep)) =

|1 0] 1E; [v0]j; 24, ey — Oew)), (D.1)
with for E irreps —1 = 2 and conversely.
e /=3p,3p+1
|[10]21E [00]j; 24, BL)) =% To()
|[10]21E [00)j; 24, B2)) = i~ 2 +@ ),
I 0]21E [v0]j; 2, BL)) = % To()
I 0]21E [00)j; 2_, E2)) = —i~% T¥() (D.2)

with (i,7") =
¢=3p+1).
e /=3p+2

(1,2) (resp. (4,4') = (2,1

)) for £ = 3p (resp.
L0115 [0 0 22, A) =
DY L)/

[ 0121E [0 0)j; 2, Ag)) =
)2 T2 ) V2.

e e ¥ (-

(T, £ (-1 (D.3)
For E, x eg systems in Dsj, D3q, Oy, the additional 7 la-
bel in [, is determined according to the rule given in
equation (68).

We underline that the values £ = 3p,3p + 1,3p + 2
correspond to the absolute values (3p 4+ 1)/2, (3p + 2)/2,
(3p + 3)/2 respectively of the eigenvalues of the A opera-
tor.

e The symmetrized eigenstates built from the uncou-
pled states associated with the eigenvalue *E; (65) are
given by:

|[10)31E3[v0]j;
[10]51E;[v 0]5;*

TEj, Eg)) =i |[10]51ET))|[v 0jj))

Ej, E—0)) =i~ *[[10]31E2))|[v0]j - j))
o (D.4)
where (5, —05) = (1,2) (resp. (2,1)) for 2j = v = 3p (resp.
2j=v=3p+1). For 2j —v—3p+2weﬁnd

015185 o 0]+ By, Av)) = % {|[10]5181) [0 L)
(1P [0} 1[0 0)j )}/ V3
55, A2)) = {1012 181)) [0 015)

HDP([10)51E2) 00— 3)) V2

I 0]%1E~ [v0]7;F

(D.5)
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D.2 Symmetrized eigenstates for G’ ® e

As shown in Section 5.3 to each unsymmetrized eigen-
state +LT/(Z)
two, also unsymmetrized, eigenstates +LT/(Z) ) for G Re.
The upper (£) indices refer to the elgenvalues of the third

of +ﬁmb, for an E® e system are associated

component of the pseudo-spin B, operator and are also
symmetry labels with the correspondences + — E71 and
— — FE{2. The symmetrized eigenstates for G’ ® e denoted

1 . _
_Ei; [U 0]33 2, Fe'uo'e'u>> =

|[10], [10]21E [ o]2

110],[10]5, 10155 [0 0)js 22, Tov0en)

= {ve} B, By [v0]5; 2+, TevOen)),

can be deduced from the corresponding ones for an E®e
case in the following way. From the property

B / G’
PENED = [0B) % xEDIE) v oy,

associated with equation (11) and the basis kets order in
(130) we obtain first the states with I, = G’ from those
in equation (D.2):

e /=3p,3p+1

{ye} B, B [00]5; 24, G'T)) = % #0700

[{7e} B, B [0 0]j; 824, G'2)) = ™% +rfl (D)

{7} B, Bl [00)j; 24, G'3)) = i + 5O

[{ye} B, By [ 0] 24, D)) = 7% +(0)C)

[{7e} B, B [0 0)j; 2, G'T)) = i ) )

25 4+

Jm—

H’ye}E Ela [U O]], 2, GIQ>> -

e} B, Bl [0 0)j; -, G'3)) = i+

(e} B, By [00]; 2, G'A)) = —i =2 +ar) )

(D.6)

with (4,i) =
{=3p+1).

Next from the properties (C.7, C.8) of the Clebsch-
Gordan coefficients the states with ., = E{ and I, = E)
are easily obtained from those in equation (D.3):

(1,2) (resp. (4,4") = (2,1

)) for ¢ = 3p (resp.
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o /=3p+2
{e} E, Ef; [v0]5; 2+, E11)) =
;20+1 1)(+ L~ (2)(+
ﬁﬁ%‘w?i) F (—1)¥ )
{1e} B, E; [v0]5; 24, E12)) =
P =)o) ()0
(JrW L F (= )QJ Nz 1)
\/5 m jm
{7e} E, Ef; [v0]5; 24, E51)) =
P =) L E @)
—=(tw, 7+ (-1 e
\/5 jm jm
{1e} E, Eq; [v0]7; 24, E52)) =
;29 -
SO £ (-pF He0). (D)

V2

The same procedure applies to the uncoupled states in
equations (D.4, D.5).

Also for m = —1/2 the states (70) associated with the
energy T E;_q /91 (69) are now given by

{7} E, Ei;[vo]j;9+7 ">> =
U [10], [10] 1EL[10]; E10>>I[v0]j -1/2))
+[10], [10] 1E2,[10]; E10>>|[v0]j1/2>>}/\/5
I{%}E7EL[UO]J7Q—7E20>>
{I[10], [1

— |[10], [1 0] 21E2 1 o]§E15>>|[u 05 1/2))}/v2.
(D.8)

0151ET, [10]5 Ba))|[v0)j —1/2)

Alternatively they can be expressed in terms of the states
|[10],[10]3, [10]3; G'5)) using equation (10) and the cor-
respondences in equation (130).

D.3 Symmetrized eigenstates for type C and D cases
The transformation laws for the eigenstates (84, 85) un-
der the action of the generators X for groups in Gy are
given by:
A
PXJermi =e
(2 -
PXJermi =e

ity +Q;J%1)iv

i(er'+r) +Q;J(izi )

Those associated with the Y generator and the time re-
versal operator are as given in Table 3 for A-type systems.
These relations are sufficient, together with the matrices
for the E-type irreps in orientation II, to built symmetry
adapted eigenstates for ¥ H;p,, of B, ® e,» systems of type
C. For E,o®e, 5 systems for groups in Gy equation (68)
is unchanged.

Similarly for type D cases, remembering that the eigen-

states _@;Zi are obtained from those in equation (84,85)
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with the substitutions (98), we have
-1 i(er’' —r)y —,(1
Px W](nZi = el Y %(nfi,
PeBR), = i g

m
The transformation laws associated with the Y generator
and the time reversal operator are as given in Table 4 for
B-type systems.
Special cases
e m = —1. From the relations

Px|[+)|[v0]j £ 1)) = e +29% | 4))|[v0]j £ 1))
Px|=)[v0]j £1)) = e T2V |))|[v0]j £1))
Py |)[[v0]j £ 1)) = —|=)[[v0]j F 1))
Py|[=Dwolj £ 1) = =[+)[v 0l F 1))

one may check with Table 2 that for all (r,7’) cases as-
sociated with C or D-types we have e!("*2r")% — +1 and
that the states W;_1; (resp. *¥;_;_) associated with the
energies (87, 99) are of symmetry As or By (resp. A; or
Bs) depending on the (r,7’) values.

e The sets of uncoupled states (89, 100)

[N 0] 7)) = P(a);
[FNI0l = 3) = ¢)-;
=0 007 ~ 1)) = pay1
[FNWOL =i+ 1) = ¢ -j+1
associated with the eigenvalues *E;;, TE;;j_

(Egs. (90, 101)) transform as

Pxpray; = e/ E0 o

PXSD( - i(2j'r/i7')1/; () —i

Px (- = ooy i1
Py o) jir = e HRG=DrE G
Py 1), =( D2* o)

PYSD( +yj-1 = (= 1)2J+190(:F)*j+1

Koy = <P<:F> -j

Koyj-1 = ¢)—j+1-

As an example the symmetrized eigenstates for a Fs ® eq
system of C-type in Cjs,, D5 symmetry are given below in
the form

|[1 O] ]-EQa [U 0].7; Q:t; evgev>>

with phases fixed as in equation (D.1).
1 O] 1Ey; [0 0]j; 24, Eio)) =i 00

[10]= 1E2,[vo1y,n+, —a) =% )

I 01 1E2,[vo1y,n VEio)) =% )
[10]- 1E2,[vo1y,rz B -5))=—i"% t@?)_ (D.9)
with

(0,-0) ( E;
(1)2) 5p E2
(2,1) 5p+1E;, (D.10)
(2,1) 5p+2Ey
(1,2) 5p+4 Ey
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For £ =5p+3

|[1 0] ]-EQa [U 0]], 'Qzl:a A1>>
F (=17 03 /V2
|[1 0] ]-EQa [U 0]], 'Qzl:a A2>>

2j+1(+@'(1):t
jm

1 2
BT+ (1P L) VR (D)
For m = —1 the states ¥, 1, and T&; ;_ (88) are re-

spectively of symmetry As and A;. Finally from the un-
coupled states (89) associated with the eigenvalues (90)
we built the symmetry adapted states

[t 0] 1B2: [0 0)j;* Eji, Eio)) = i |+))|[v0]5 k))

[10]5 1E2,[UO] Eji, B; — 0)) = i=% |=))|[v0]j — k))
where the labels are specified as in equation (D.10) with ¢
replaced by 2j (resp. 2(j — 1)) for k = j (resp. k =j —1).
Likewise the states with symmetry A;, A, are given by

[10)5 1B5; 0" Eje, A1) =
2”1{|+>>I[v 01j k) — (=) [-)[w 0l — k))}/V2
[L0]5185; [00Lj5* By, Az)) =
PN 0 K)) + (=) )] 0]j —k))}/V2
for 2k = 5p+ 3.
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